
Automatic segmentation of TIMIT by dynamic programming
Van Zyl van Vuuren∗, Louis ten Bosch† and Thomas Niesler∗

∗Department of Electrical and Electronic Engineering
University of Stellenbosch, South Africa

Email: {15446204,trn}@sun.ac.za
†Department of Linguistics

Radboud University Nijmegen, The Netherlands
Email: l.tenbosch@let.ru.nl

Abstract—We propose an algorithm based on the principle of dynamic
programming for the automatic segmentation of continuous speech into
phoneme-like units. A measure of local dissimilarity among consecutive
feature vectors is combined with a knowledge of the expected statistical
distribution of the segment lengths within a dynamic programming
framework to obtain an optimal placement of segment boundaries.
We compare the performance of our algorithm with the performance
of two recently-proposed alternatives by measuring how closely the
hypothesised boundaries match the TIMIT phone boundaries. The results
showed that we are able to improve on the performance of the two
contrasting approaches. Furthermore, we show that a hybrid approach
which combines aspects of all three algorithms leads to even better results.

I. INTRODUCTION

The task of accurately segmenting a speech signal into phoneme-
like units plays an important role in the speech processing field.
Although accurate manual segmentation can be achieved by trained
phoneticians, the task is tedious, expensive and intrinsically sub-
jective. In HMM-based ASR systems, time-aligned phonetic tran-
scriptions are often needed for the development of the pronunciation
dictionary and acoustic models. This is not always feasible, and is a
particular obstacle for the development of ASR systems for under-
resourced languages, for which no, or very little, transcribed phonetic
material is available. In these situations, automatic segmentation
algorithms can accelerate the task of developing a pronunciation
dictionary and obtaining suitable bootstrapping acoustic training data,
thereby substantially reducing the time it would take to develop
the ASR system. The availability of reliable automatic segmentation
algorithms is also useful in technologies outside ASR, such as the
study of pronunciation variation and the development of coherent
large-scale dictionaries.

Several approaches to the automatic segmentation of speech have
been proposed over the years. Some require prior training, relying
for example on HMM forced alignments [1]. Others make use of
previously stored speech segments for template matching by using
the phonetic transcription [2]. A third and more prevalent class of
algorithms rely solely on the acoustic information to detect transient
events in the speech signal [3]–[7]. When considering a under-
resourced setting in which speech corpora are unavailable or very
small, model training may not be feasible. Under these circumstances
this latter class of algorithms represents the most viable option.

In this paper we propose a new algorithm for the acoustic seg-
mentation of speech based on the principle of dynamic programming
(DP). DP-based segmentation has been proposed in [3], in which
a distortion metric within segments is minimised by using prior
knowledge of the number of phones in a sequence. The algorithm we
propose requires no information regarding the number of phones and
maximises the probability of a specific segment boundary sequence.

A well known class of speech segments are phonemes, the
identification of which is the goal of most published segmentation
algorithms. By using the annotated phoneme boundaries given in
TIMIT, the acoustic characteristics in the vicinity of the phoneme
boundaries as well as the lengths of the phonemes can be inspected.
The proposed algorithm then uses this prior information to infer the
probability of a boundary occurring at every specific point in time in
a speech signal. Dynamic programming principles are then applied
to detect the most probable sequence of boundary positions.

Section II gives a brief overview of the class of segmentation
algorithms based on transient events in acoustic information, and
includes a discussion on a few recent algorithms. Section III provides
a detailed description of the proposed DP-based segmentation algo-
rithm, and Section IV discusses the quality measures used to assess
segmentations. The experimental setup is specified in Section V,
and experimental results are given in Section VI. Finally concluding
remarks are presented in Section VII.

II. BACKGROUND

Many segmentation algorithms are based on the assumption that
there are regions in speech, termed speech segments, where the
acoustic features stay relatively constant, and that there are clear
transitions between such regions. To detect these transitions, the
algorithms employ some estimate of the local acoustic change in
the signal. ‘Local’ in this context refers to temporal acoustic changes
taking place at a specific time independent of any previous or future
acoustic changes within the signal. A function that quantifies these
local acoustic changes will be referred to as the local score function
in the remainder of this text. The local score function is central to
all acoustic segmentation methods, and therefore different types of
local score functions and their application in the recent literature will
briefly be reviewed.

A. Algorithms based on maximum local acoustic change

The most common approach used in speech segmentation is to
hypothesise segment boundaries at the times at which local acoustic
change is at a maximum. These local maxima are found by searching
for the peaks in the local score. However, the local score may contain
many small peaks, which are the result of small acoustic changes
that do not necessarily indicate segment boundaries. These additional
peaks can lead to over-segmentation, where more than one segment
boundary is hypothesised while only one is truly present. Over-
segmentation can be reduced by including a threshold below which
peaks are ignored. A selection of segmentation algorithms falling into
this category are reviewed in the following. They were specifically
chosen to illustrate a diversity of local score functions, of which a

selection will later be compared experimentally. The local score will
henceforth be denoted as LS in equations.

1) Räsänen et al. [4]: The local score function used in this
algorithm is the cross correlation between two FFT magnitude
vectors. This is shown in Equation 1, where f and g represent the
FFT magnitude vectors for the frames to the left and to the right
respectively of the investigated frame, Fj .

LS(Fj) =
f.g

‖ f ‖‖ g ‖ (1)

Feature vectors that are similar will give a score close to 1,
and dissimilar vectors will give a score closer to 0. The algorithm
applies a non-linear filter to the cross-correlation sequence in order
to quantify the degree of uniformity in the region preceding and
following the point of interest. In a similar way, the dissimilarity
between these regions is also determined. The difference between
the dissimilarity and uniformity values leads to a signal of which the
valleys corresponds to probable segment boundaries. However, this
signal is very noisy, and there are many small valleys. The number of
these smaller valleys is reduced by application of a ‘minmax’ filter,
which searches a fixed region (nmm) around the point of interest to
find the local maximum and minimum values. The difference between
this maximum and minimum serves as the output of the filter at the
position of the minimum. This filter is applied throughout the signal
in non-overlapping regions. The filter output is a signal of which the
peaks represents possible boundaries. Given that the ’minmax’ filter
region is usually very small and applied in non-overlapping intervals,
many closely spaced peaks may still remain. Temporal peak masking
is therefore applied in a subsequent step. Two peaks falling within a
determined interval (td) of each other and which are above a chosen
threshold (pmin) are identified, and the highest peak retained. The
location of the highest peak is also shifted a small distance toward
the eliminated smaller peak in proportion to their amplitudes.

2) Ten Bosch et al. [5]: This work uses the angle between the
smoothed feature vectors just before and just after the point of interest
to quantify the degree of local change. This is given by Equation 2,
where f and g are the averages of the two feature vectors before and
after the frame of interest Fj respectively.

LS(Fj) = arccos
f.g

(‖ f ‖‖ g ‖) 1
2

(2)

12 MFCC and log energy together with their first and second
derivatives are used as a 39-dimensional feature vector. All local
maxima above a threshold (δ) are hypothesised as boundaries.

3) Estevan et al. [7]: This algorithm employs maximum margin
clustering to detect points of change in a feature vector consisting
of 12 MFCC coefficients, log energy and their first and second
derivatives. A sliding window, N frames wide and centered about
the frame of interest, sweeps through the signal. MMC clustering
(using a RBF kernel) is applied to the frames within this window. The
width of the RBF kernel, W , is estimated from a development set.
The MMC clustering results in a cluster label for each frame within
the window, and changes in these labels indicate possible segment
boundaries. It was found that the best way to detect these changes
is by using the Euclidean distance, as given by Equation 3, between
the cluster labels and the cluster means. Let f be the cluster label
of each frame within the sliding window, and g be the mean of the
cluster throughout the signal. Peaks in the Euclidean distance will

then indicate the segment boundaries.

LS(Fj) = [

T∑
l=1

(fl − gl)2]
1
2 (3)

4) Sarkar et al. [6]: This method differs from the previous three
by operating in the time domain rather than the frequency domain.
The local score function used in this case is the average level crossing
rate. The level crossing rate is closely related to the zero crossing
rate, but with multiple additional levels other than y = 0, and among
which the average crossing rate is taken. The levels can be distributed
uniformly or non-uniformly. For this choice of local score, a boundary
corresponds to a valley rather than a peak. As for some of the
preceding algorithms, a threshold is required to prune out shallow
valleys which lead to over-segmentation.

B. Algorithms based on minimising a distortion metric

Another approach to speech segmentation is to increase the unifor-
mity within segments, i.e. to minimise some distortion metric within
segments. In the work by Sharma et al. [3], the local score is the
Euclidean distance applied to MFCC features. The distortion within
a segment is calculated by Equation 5. This calculation employs the
local score at frame j, given by Equation 3, and the mean of the
local score from frame i to n, given by Equation 4. The segment
stretching from frame i to frame n is denoted by Si,n.

Mi,n =
1

n− i+ 1

n∑
j=i

LSj (4)

distortion metric(Si,n) =

n∑
j=i

(LSj −Mi,n)2 (5)

The overall distortion of the speech signal is a cumulative sum of
the distortions of all the segments. The overall distortion can be
minimised by applying a level-based DP algorithm to search for the
optimal segmentation, assuming that the number of levels (segments)
in the signal is known.

C. A proposed local score

For our formulation of the segmentation problem it is convenient
if the local score lies between the values of 0 and 1. We propose the
use of a normalised city block distance as shown in Equation 6,

LS(Fj) =

T∑
l=1

|fl − gl|

T∑
l=1

|fl|+
T∑

l=1

|gl|
(6)

where f and g are the feature vectors before and after the frame
of interest Fj. This proposed formulation of the local score will be
compared with other candidates in the experimental evaluation. Note
that parameterisations for f and g are not specified, allowing different
feature vectors to be used during experimentation.

III. A DP-BASED SEGMENTATION ALGORITHM

Most segmentation algorithms based on maximum local-acoustic
changes are prone to over-segmentation because they hypothesise
more than one segment boundary at a point of acoustic change. This
occurs due to the presence of multiple local maxima in the local
score. To counteract this, the algorithms include various types of
thresholds to eliminate such very short segments. Several examples

of such measures were given in Section II. These remedies are ad-
hoc, however, and introduce additional parameters into the algorithm
that require optimisation.

The algorithm we propose includes an explicit probabilistic model
for the length of a segment. Segments that are either very short or very
long are penalised by their associated low probability. The probability
distribution of phoneme lengths for TIMIT can be estimated from
the phonetic annotations, as illustrated in Figure 1. For illustrative
purposes, the distribution is normalised with respect to its maximum
probability.

Fig. 1. Probability distribution of phoneme lengths in the TIMIT training
set [8].

A. Segment probability

To gain some insight into the behaviour of local scores near
segment boundaries, the local score in the close vicinity of phoneme
boundaries, as given by the TIMIT annotations, is calculated and used
to estimate a local score probability distribution given a boundary.
A similar distribution is determined for the local score values taken
far from boundaries, i.e. a local score probability distribution given
that there is no boundary. Figure 2 shows these distributions, each
normalised with respect to its maximum probability, for the local
score calculated with Equation 6 when using FFT magnitudes as the
feature vector. The distributions of the local score and the phoneme
length can now be used to determine the probability of a boundary
occurring at a specific frame in a speech signal.

Consider a signal consisting of N+1 frames. Now let the time of
occurrence of each frame correspond to a state of a HMM as shown
in Figure 3, where M is the maximum allowed number of frames
per segment and S0 is the time of occurrence of the first frame of
the signal. The vertical dashed arrows between S1 and S1, S2 and
S2, and between SN−1 and SN−1 indicate an expansion of the same
HMM state.

When a state is visited by a path through the Markov model
shown in Figure 3, a segment boundary is considered to occur at the
corresponding speech frame. The transition and emission probabilities
are calculated according to Equations 7 and 8 respectively, where SL
refers to the segment length, LS to the local score, and SB to the
occurrence of a segment boundary.

ai,j = P (Sj |SL(Sj , Si)) (7)

bj = P (SB|LS(Sj)) (8)

Fig. 2. Probability distribution estimates of local score values at, and away,
from phoneme boundaries for Equation 6 applied to the FFT magnitudes.

S0 S1 S2 SM

S1 S2 SM+1S3

SN−2 SN−1 SM+(N−2)SN

SN−1 SN SM+(N−1)SN+1

S2 S3 SM+2S4

a0,1

a0,2

a0,M

a1,2

a1,3

a1,1+M

a...

a2,3

a2,4

a2,M+2

a...

a...

a...

a...

a...

S
T
A
R
T

O
F
S
P
E
E
C
H

E
N
D

O
F
S
P
E
E
C
H

Fig. 3. DP-based segmentation cast as a HMM.

The segment length in Equation 7 is equal to the time step between
two consecutive frames multiplied by the number of states separating
the currently visited state and its parent state, as shown in Equation 9,
where Sj is the current state, and Si is the parent state.

SL(Sj , Si) = (j − i) ∗ step (9)

Hence the transition probability is dependent only on the elapsed
time between states. The emission probability at state Sj, as shown in
Equation 8, is dependent on the local score LS(Sj). To calculate the
emission probability, Bayes rule is applied as shown in Equation 10,
where !SB refers to the absence of a segment boundary.

P (SB|LS(Sj)) =

P (LS(Sj)|SB)P (SB)

P (LS(Sj)|SB)P (SB) + P (LS(Sj)|!SB)P (!SB)

(10)

The prior probability of a segment boundary can be estimated by
dividing the number phoneme boundaries in the TIMIT annotations
by the number of frames, as shown in Equation 11.

P (SB) =
number of phoneme boundaries in TIMIT

number of frames in TIMIT
(11)

The probability that a boundary occurs at a particular frame can
now be calculated by using Equations 9 and 10 in conjunction with
estimates of the various probability distributions.

B. Optimal path

To find the globally optimal path from S0 to SN , all possible
transitions shown in Figure 3 must be considered. This can be
accomplished by using a DP algorithm. The states that were visited
along the optimal path will identify the optimal segmentation. It is
important to note that S0 and SN are always included in the path,
and therefore the algorithm assumes that segment boundaries are
always present at the start and the end of the speech signal. This
means that any initial and final silence must be removed before
applying the algorithm.

C. Normalising for path length

During the Viterbi decoding, many probabilities are multiplied
together for any given path. When determining the optimal path,
shorter paths (which contain fewer multiplications and thus longer
segments) may be preferred, even when these have low associated
emission and transition probabilities. We compensate for this effect
by modifying the emission and transition probabilities as shown in
Equations 12 and 13.

ai,j = P (Sj |SL(Sj , Si))
SL(Sj ,Si) (12)

bj = P (SB|LS(Sj))
SL(Sj ,Si) (13)

These modifications normalise the path probability and remove the
bias towards segmentations containing fewer segment boundaries.

IV. ASSESSING SEGMENTATION ACCURACY

In order to assess the quality of automatic-generated segmentations,
we will determine how closely they correspond to the TIMIT phonetic
segmentations. This provides a useful measure of segmentation
accuracy. However it is dependent on the segmentation conventions
used in TIMIT. For example, even though it is common practice for
the /p/ to be segmented as a single phone in human annotations, the
silence (closure) associated with the stop is considered a separate
acoustic event in TIMIT. We found that the automatic segmentation
algorithms could detect these closures quite accurately, and therefore
decided to adhere to the original 61 TIMIT phone definitions without
modification.

A. Comparing segmentations by DP

Comparing two sequences of segment boundary times can again
be achieved by DP. We will proceed by first determining the best
alignment between two sequences of boundary times. Then we will
use this alignment to calculate a path cost. The alignment procedure
uses a matrix of path costs as shown in Figure 4.

The first boundary in both sequences must coincide, and this
corresponds to the bottom left cell of the matrix. Three alternative
scenarios are then considered: (i) a hypothesised boundary PH(i) is

0

Take minimum

Deletion

Match

Insertion

Reference boundaries (PR)

H
y
p
ot
h
es
iz
ed

b
ou

n
d
ar
ie
s
(P

H
)

PR(1) PR(2) PR(3) PR(4)

P
H
(1
)

P
H
(2
)

P
H
(3
)

P
H
(4
)

Fig. 4. Alignment matrix for segmentation scoring.

paired (matches) a boundary PR(j) in the reference segmentation, (ii)
a hypothesised boundary PH(i) is not paired with any boundary in
the reference transcription (insertion) or (iii) there is no hypothesised
boundary that can be paired with a boundary PR(j) in the reference
transcription (deletion).

All possible paths from the bottom left to top right in the matrix
shown in Figure 4 are computed recursively by dynamic program-
ming. Starting from the bottom left of this matrix, each path can be
extended upwards, to the right, or diagonally up and to the right,
indicating an insertion, a deletion or a match between boundaries
respectively. Each of these possibilities has a specific associated
cost. When a reference boundary falls between two hypothesised
boundaries, or vice versa, the cost is calculated by considering the
distance to the nearest of the two boundaries. When paths meet, only
the path with the lowest cost survives.

This procedure is applied iteratively, until all paths have reached
the top right cell, which will then contain the final alignment cost
between the two sequences. This cost reflects the difference between
the hypothesised and reference sequences since it is the cumulative
cost of every match, insertion, and deletion in the alignment. Fur-
thermore, the cost has dimensions of time. By dividing it by the
number of reference boundaries, the cost in seconds per reference
boundary can be obtained. This is the average time difference between
a paired hypothesised- and reference boundary and it will be used as
a figure of merit in our later experiments. In addition, the number of
insertions, deletions, and matches can be obtained by tracing back
along the optimal path.

B. Fixed margin method

It appears to be standard practice in related research to consider a
hypothesised and a reference segmentation boundary to be a match
whenever they occur within 20ms of one another [4]. All non-
matching boundaries are then either insertions or deletions. In order
to make our results more directly compatible with those of others, this
scoring framework has also been employed. An error measure termed
the average error is defined, which is the average of the percentage
insertions and deletions taken with respect to the number of reference
boundaries in a speech signal. Furthermore, this interpretation of
insertions, deletions and average error will be used.

V. EXPERIMENTAL SETUP

A. Data

Our experimental evaluations are based on the TIMIT database.
The development set specified in [8] was used to optimise all

parameters, and the core test set defined in [8] was used exclusively
for final testing. There is no speaker overlap between these two
sets. The use of an explicit development set avoids biased results
which would be obtained if the performance of the algorithm was
measured on the same data used to optimise its hyperparameters. In
the literature dealing with automatic segmentation, the separation of
development and testing data was found not to be common. Leading
and trailing silences were removed to account for the assumption that
each utterance begins and ends with a segment boundary.

B. Feature vectors

We have chosen three feature vector configurations popular in
literature on automatic speech segmentation for comparative experi-
mentation.

1) FFT: Unprocessed 128-point FFT magnitudes
2) MFCC: 12 MFCCs and log energy
3) MFCC+∆+∆∆: MFCC with appended first and second deriva-

tives
By considering the local scores separately for the MFCCs, for the

delta and for the acceleration features, it was found that a peak for
the MFCCs or the acceleration components always coincides with a
valley for the delta component, and vice versa. To account for this,
the overall local score was calculated by averaging the local scores
calculated for MFCCs and acceleration components, and the negative
of the local score for the deltas.

C. The local score

Three local scores were investigated:
1) The cosine distance (C) shown in Equation 1,
2) The Euclidean distance (E) shown in Equation 3, and
3) The normalised city block distance (NCB) shown in Equation 6.
In our experiments, f and g were taken to be the averages of

two frames to the left and two to the right of the inspected frame
respectively. Depending on the local score, boundaries are expected
to occur at either peaks or valleys (local maxima or minima) of
the local score. Equation 10 is therefore only calculated at frames
which coincide with local maxima or minima of the local score and
a probability of 0 is assigned to all other frames.

D. The probability weights

As it stands, the DP segmentation algorithm will give equal weight
to the transition and emission probabilities, due to the segment length
and local score respectively. However, it may be beneficial to shift
the balance more strongly towards one or the other. By multiplying
the log values of the emission and transition probabilities by positive
constants that sum to one, this shift in balance can be achieved, and
will allow deletions to be traded for insertions and vice versa. Optimal
performance on the development set was achieved by assigning a
heavier weight to the emission probability (0.6–0.7) than to the
transition probability (0.3–0.4). This gives a stronger preference to
higher emission probabilities and leads to a reduction in insertions.

VI. EXPERIMENTAL RESULTS

A. Smoothing window size

In the following experiments a frame size of 16ms and a frame
shift of 4ms were used. Before calculating the local score, each
resulting MFCC and FFT value were smoothed by taking the av-
erage within a window centered on the feature vector in question.
Subsequently, the average DP cost (Section IV-A) and the average
error (Section IV-B) was calculated on the development set for
different smoothing window sizes applied to different local score

and feature vector combinations. Figures 5, 6, and 7 respectively
show these results for the cases in which the cosine distance is
applied to the FFT, the normalised city block distance is applied
to MFCCs, and the Euclidean distance is applied to MFCC with first
and second derivatives. For each configuration, all other parameters
were optimised on the development set.

Fig. 5. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the cosine distance
applied to the FFT.

Fig. 6. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the normalised city block
distance applied to the MFCCs.

The results show that the optimal smoothing window sizes are
similar for the FFT and MFCC parameterisations (16–24ms). A
longer window (around 40ms) is required by the MFCC+∆+∆∆
parameters, however. We believe that the introduction of first and
second differentials introduces additional local maxima into the local
score, which can lead to an increase in insertions. By lengthening the
smoothing window, this is compensated for.

B. Choice of feature vector and local score

The performance of the DP segmentation algorithm when using
the three different feature parameterisations and the three different
local score formulations was compared experimentally, and results are
shown in Table I. For each configuration, the length of the smoothing

Fig. 7. DP cost (Section IV-A) and average error (Section IV-B) for different
smoothing window sizes on the development set for the Euclidean distance
applied to the MFCC with their first and second derivatives.

window as well as the probability weights are optimised on the
development set, and segmentation accuracies determined on the test
set. Both the DP path cost, in milliseconds per reference boundary,
and the fixed margin average percentage error are shown.

TABLE I
DEVELOPMENT- AND TEST-SET PERFORMANCE OF THE DP

SEGMENTATION ALGORITHM FOR THREE CHOICES OF FEATURE VECTOR
AND FOR THE NORMALISED CITY BLOCK (NCB), EUCLIDEAN (E) AND

COSINE (C) LOCAL SCORE (LS) FORMULATIONS.

Configuration DP Cost (ms) %ERR
Feature LS Dev Test Dev Test
FFT NCB 18.62 18.42 20.21 19.80
MFCC NCB 18.94 18.82 22.40 22.80
MFCC+∆+∆∆ NCB 19.28 18.83 21.81 22.07
FFT C 24.02 24.13 28.20 27.62
MFCC C 19.01 18.98 22.53 22.85
MFCC+∆+∆∆ C 18.94 18.72 21.56 21.72
FFT E 28.06 27.93 33.27 33.13
MFCC E 18.49 18.22 22.67 22.85
MFCC+∆+∆∆ E 17.77 17.58 21.08 21.40

The normalised city block distance delivers the best overall per-
formance. When applied to the MFCC+∆+∆∆ parameterisation, the
Euclidean distance achieved similar performance. A configuration
that stands out from the rest is the normalised city block distance
applied to the FFT, which greatly outperforms all other combinations
with the FFT feature vector. The FFT in general is the feature which
is most sensitive to the remaining parameters, and was seen to be
prone to over-segmentation. The FFT also has a higher dimensionality
than the other parameterisation. It appears from the results that the
normalised city block distance is most robust to this variation in
dimensionality. Thus, the the normalised city block distance with a
weighting leaning towards the emission probability (0.7) to reduce
insertions gives very promising results. Among the feature parametri-
sations, the MFCC and the MFCC+∆+∆∆ are most competitive.

When comparing performance on the development and on the test
sets, it is evident that the same patterns emerge from both. In the
experiments that follow, each local score’s best overall performing
configuration will be used. These are the normalised city block
distance for the FFT, the cosine distance for the MFCC+∆+∆, and
the Euclidean distance for MFCC+∆+∆. These will henceforth be

referred to as configuration C1, C2, and C3 respectively.

C. Silence removal

Many TIMIT sentences contain regions of silence in which tem-
poral changes nevertheless occur. In order to avoid the hypotheses
of segment boundaries in these regions, all boundaries were removed
at frames when the ratio of the average energy content from 30ms
before to 30ms after the frame in question, to the mean energy of the
signal fall below a certain threshold. Different threshold values were
investigated, and a typical result is shown in Figure 8. A threshold
of 0.2% (i.e. a value of 0.002) delivered optimal performances for
all configurations.

Fig. 8. DP cost (Section IV-A) and average error (Section IV-B) against %
energy threshold on the development set for configuration C1.

D. Comparison with other segmentation algorithms

In the previous sections, an optimal configuration for the DP
segmentation algorithm proposed in this paper is determined by
experimentation. In this section we will benchmark the performance
of this optimal configuration against two recent approaches to speech
segmentation found in literature [4] [5]. Both approaches belong to
the class of segmentation algorithms that rely on transient events in
the acoustical information, as described in Section II-A. The method
described in [4] claimed to achieve the same or better performance
than many earlier approaches, while [5] is an algorithm with which
the authors have had good prior experience.

Each method compensates for silences in its own way. The
algorithm given in [5] scales the local score by the log frame energy
to attenuate points of low energy, while the algorithm in [4] uses a
similar approach to that proposed in this paper, but uses the average
energy measured over the interval from -8ms to +30ms about the
point of interest, and a threshold which is a multiple of the minimum
energy for the signal. In the evaluation presented in the following,
the parameters of each method were optimised on the development
set.

Table II presents the DP cost in milliseconds per reference bound-
ary, the percentage insertions and deletions with respect to the number
of reference boundaries, and the average error for the optimised
cases on the development set. The values shown for configura-
tions C1, C2 and C3 are those achieved after silence removal.

When applying these parameter values to the core test set, the
results shown in Table III are obtained.

TABLE II
PERFORMANCE COMPARISONS ON THE DEVELOPMENT SET AFTER

SILENCE REMOVAL.

Method DP Cost (ms) % Ins % Del %ERR
DP (C1) 17.98 15.56 24.16 19.86
DP (C2) 18.12 15.28 26.97 21.13
DP (C3) 17.04 18.15 23.05 20.60
Räsänen 18.91 17.92 26.99 22.46
ten Bosch 25.07 26.19 27.37 26.78

TABLE III
PERFORMANCE COMPARISONS ON THE CORE TEST SET AFTER SILENCE

REMOVAL.

Method DP Cost (ms) % Ins % Del %ERR
DP (C1) 17.92 14.49 24.53 19.51
DP (C2) 18.23 14.80 28.04 21.42
DP (C3) 17.13 17.14 24.93 21.03
Räsänen 19.40 17.18 28.19 22.68
ten Bosch 25.17 25.36 28.28 26.82

For illustrative purposes, the segmentations produced by the three
algorithms for the same sentence, dr6-fbch0-sa1, are shown in Fig-
ures 9, 10, and 11, where configuration C3 was used for the DP
algorithm. Each figure shows the first two seconds of the sentence
as well as the TIMIT phone boundaries. The dashed vertical lines
show the hypothesised boundaries, and the solid vertical lines show
the reference boundaries.

Fig. 9. Segmentation results for the DP algorithm on dr6-fbch0-sa1.

The vertical axis in Figure 9 for the DP algorithm shows the
emission probabilities. Unlike the other two approaches, there is
no threshold under which boundaries are ignored. Thus, even when
the local score results in a low emission probability, a boundary
can be hypothesised if the transition probability is high. This is
clear, for example, at the boundary that is hypothesised at the ‘aa’
phoneme. The converse may also be true, i.e. even when the emission
probability is high, a segment boundary may be suppressed by a low
transition probability, as illustrated at the second ‘iy’.

Figure 10 shows the output of the ‘minmax’ filter described in
Section II-A of the Räsänen algorithm. Notice that all peaks falling
within 32ms of each other have been combined by temporal peak
masking, and that the threshold in this case is 0.07, below which
all peaks are ignored. These parameter values were determined to be
optimal for the development set.

The local score of ten Bosch’s algorithm has been multiplied by
the log energy to reduce the insertion of boundaries in regions of

Fig. 10. Segmentation results for the Räsänen algorithm on dr6-fbch0-sa1.

Fig. 11. Segmentation results for the ten Bosch algorithm on dr6-fbch0-sa1.

silence, which are characterised by very low energy. Unfortunately
this also results in the introduction of unwanted small peaks when
the log energy increases while the local score decreases, or when
the energy decreases while the local score increases. Because the
segment boundaries usually coincide with the peaks of the local score,
these newly added peaks lead to insertions as shown, for example,
in Figure 11 at ‘er’ and at each ‘s’. This leads to over segmentation,
which is clear when looking at the higher percentage insertions in
Table III. From the development set it was found that the optimal
threshold for the ten Bosch algorithm is 0.13.

E. Combined methods

By inspection of the segmentation results produced by the DP
algorithm, it was found that there regularly are small emission prob-
ability peaks present between the boundaries of very long segments.
When these peaks coincide with high probability segment lengths,
as determined by the segment length distribution, boundaries are
hypothesised at these locations, resulting in unwanted insertions. With
some experimentation it was found that better results can be obtained
by applying a threshold to the emission probability (Equation 8)
before searching for the optimal path by DP. All probabilities above
the threshold are unchanged, and the probabilities below the threshold
are reduced to 0. A variety of threshold values were investigated on
the development set for each of the chosen three DP configurations,
with all other parameters fixed at their previously found optimal
values. Figures 12 and 13 show the resulting effect on the DP cost and

on the average error for configuration C1. By inspecting the average
error graph, there is a point at which the reduction in insertions is
greater than the rise in deletions. However, the average error can
only be reduced to a certain point, after which the hypothesised and
reference boundaries rapidly become misaligned. This is indicated at
the point of DP cost increase. The DP cost is therefore the best way
to determine the optimal threshold.

Fig. 12. DP cost (Section IV-A) against emission probability threshold on
the development set for configuration C1.

Fig. 13. Average error (Section IV-B) against emission probability threshold
on the development set for configuration C1.

It was found that thresholds of 0.1, 0.5, and 0.1 lead to optimal
performance on the development set for configurations C1, C2 and C3
respectively. When applied to the core test set, this leads to the results
in Table IV.

TABLE IV
METHOD COMPARISONS, AFTER EMISSION PROBABILITY THRESHOLD

WERE APPLIED, ON THE CORE TEST SET.

Method DP Cost (ms) % Ins % Del %ERR
DP (C1) 17.68 12.83 24.96 18.89
DP (C2) 18.08 13.91 28.44 21.17
DP (C3) 16.99 16.65 25.02 20.83
Räsänen 19.40 17.18 28.19 22.68
ten Bosch 25.17 25.36 28.28 26.82

By comparing the results in Tables III and IV, improvements in
performance for all three configurations are seen. Two key values
that stand out from Table IV are the small DP cost obtained by
configuration C3, and the small average error obtained by configu-
ration C1. The overall best, and most consistent configuration thus
far, is configuration C1, which has the normalised city block distance
and the FFT.

VII. SUMMARY AND CONCLUSION

We have proposed an algorithm based on the principle of dynamic
programming for the automatic segmentation of continuous speech
into phoneme-like units. A measure of the local dissimilarity between
feature vectors is combined with a statistical description of the ex-
pected segment lengths within the dynamic programming framework
in order to determine the optimal locations of segment boundaries
within the speech utterance. We find that this approach leads to
performance improvements relative to two alternative methods drawn
from the literature. Analysis of the strengths of the individual
techniques revealed that further improvements can be obtained by
a hybrid approach employing aspects of each. We conclude that the
use of dynamic programming as a basis for speech segmentation is a
successful approach. In future work we plan to analyse the occurrence
of insertion and deletion errors more carefully with respect to the
type of phoneme within which they occur, as well as the role of
context in the placement of segment boundaries. The effectiveness
of our DP-based segmentation will also be tested on other languages
using the distributions created from TIMIT to see how universal the
segment boundary behaviour is. Furthermore, we will investigate the
sensitivity of the segmentation algorithms to parameter changes, and
the effect of increased parameters.

VIII. ACKNOWLEDGEMENTS

We gratefully acknowledge the Department of Arts and Culture
(DAC) for their financial support.

REFERENCES

[1] Y. jun Kim and A. Conkie, “Automatic segmentation combining an hmm-
based approach and spectral boundary correction,” in Proceedings of the
International Conference on Spoken Language Processing, ICSLP, 2002,
pp. 145–148.

[2] T. Svendsen and F. Soong, “On the automatic segmentation of speech
signals,” in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, ICASSP, vol. 12, apr 1987, pp. 77 –
80.

[3] M. Sharma and R. Mammone, “‘blind’ speech segmentation: automatic
segmentation of speech without linguistic knowledge,” in Proceedings
of the Fourth International Conference on Spoken Language Processing,
ICSLP, vol. 2, oct 1996, pp. 1237 –1240.

[4] Okko Räsänen, U. K. Laine, and T. Altosaar, “Blind segmentation of
speech using non-linear filtering methods,” in Ipsic I. (Ed.): Speech
Technologies. InTech Publishing, 2011, pp. 105 –124.

[5] L. ten Bosch and B. Cranen, “A computational model for unsupervised
word discovery,” in Order A Journal On The Theory Of Ordered Sets
And Its Applications, 2007, pp. 1 – 4.

[6] A. Sarkar and T. Sreenivas, “Automatic speech segmentation using
average level crossing rate information,” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing,
ICASSP, vol. 1, 2005, pp. 397 – 400.

[7] Y. P. Estevan, V. Wan, and O. Scharenborg, “Finding Maximum Margin
Segments in Speech,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, ICASSP, 2007, pp.
937 –940.

[8] A. K. Halberstadt, “Heterogeneous Acoustic Measurements and Multiple
Classifiers for Speech Recognition ,” Ph.D. dissertation, Massachusetts
Institute of Technology, MIT, 1998.

	Introduction
	Background
	Algorithms based on maximum local acoustic change
	Räsänen et al.four
	Ten Bosch et al.five
	Estevan et al.seven
	Sarkar et al.six

	Algorithms based on minimising a distortion metric
	A proposed local score

	A DP-based segmentation algorithm
	Segment probability
	Optimal path
	Normalising for path length

	Assessing segmentation accuracy
	Comparing segmentations by DP
	Fixed margin method

	Experimental setup
	Data
	Feature vectors
	The local score
	The probability weights

	Experimental results
	Smoothing window size
	Choice of feature vector and local score
	Silence removal
	Comparison with other segmentation algorithms
	Combined methods

	Summary and conclusion
	Acknowledgements
	References

