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Abstract
We present a radio browsing system developed on a very small
corpus of annotated speech by using semi-supervised training
of multilingual DNN/HMM acoustic models. This system is
intended to support relief and developmental programmes by
the United Nations (UN) in parts of Africa where the spoken
languages are extremely under resourced. We assume the avail-
ability of 12 minutes of annotated speech in the target language,
and show how this can best be used to develop an acoustic
model. First, a multilingual DNN/HMM is trained using Acholi
as the target language and Luganda, Ugandan English and South
African English as source languages. We show that the lowest
word error rates are achieved by using this model to label further
untranscribed target language data and then developing SGMM
acoustic model from the extended dataset. The performance
of an ASR system trained in this way is sufficient for keyword
detection that yields useful and actionable near real-time infor-
mation to developmental organisations.
Index Terms: developmental and relief monitoring, radio
browsing, multilingual deep neural network, semi-supervised
training, Acholi, Luganda, Ugandan languages

1. Introduction
In societies with good internet connectivity, social media is a
prevalent communication tool. When internet connectivity is
insufficient, however, community radio stations hosting phone-
in talk shows provide a popular way for citizens to communicate
their news and challenges. This is the situation in rural Uganda,
for example. The UN has piloted a radio browsing system in
this region, with which it monitors such radio discussions to
obtain information that can inform the organisation’s relief and
development programmes [1]. However, this system was devel-
oped using an approximately 9-hour long corpus of annotated
audio per target language. Although this is regarded as a small
corpus from the point of view of acoustic modelling, it never-
theless represents a key obstacle in terms of how quickly the
radio browsing system can be deployed. In particular, when a
crisis occurs, aid organisations must move very quickly to es-
tablish their relief and support strategy. The delay associated
with compiling a 9-hour long corpus in the necessary language
is unacceptable under these circumstances.

We therefore consider the question of what can best be
achieved using resources that can be assembled in a very short
time (1-2 weeks). From our experience in compiling the previ-
ous corpora in Luganda and Acholi, we estimate that it is rea-
sonable to assume that within the space of one week a corpus of
approximately 15 minutes of orthographically annotated speech

can be compiled in the new target language. This timespan in-
cludes the recruitment and training of a proficient speaker of
the target language as transcriber. We also assume that existing
corpora in other languages are available to aid acoustic model
development.

The combination of Deep Neural Networks (DNNs) and
Hidden Markov Models (HMMs) is by now an established ar-
chitecture in high performance speech recognition systems [2,
3, 4]. However, DNN/HMM acoustic models require many
hours of transcribed speech for good performance. Thus the ap-
plication of DNN/HMM models for under-resourced languages
with severely limited training data leads to performance that is
inferior to that achieved by more traditional acoustic models
such as HMM/GMMs or Subspace Gaussian Mixture models
(SGMMs) [5]. Two solutions have been proposed in the litera-
ture. The first consists of the use of transcribed data from other
better-resourced languages to develop multilingual acoustic
models that can be refined to the target language using a small
training set [6, 7, 8, 9, 10, 11]. The other consists of the in-
corporation of untranscribed data from the target language into
model training. This is generally referred to as semi-supervised
training [7, 12, 13, 14, 15, 16].

In this paper, we combine multilingual acoustic modelling
with DNNs and semi-supervised learning to develop an acous-
tic model for the radio browsing system using just 12 minutes
of transcribed speech in the target language. We also describe
the role of filters and human analysts as a final component of
the radio browsing system which has been key to its active de-
ployment.

The paper is organized as follows: Section 2 describes the
radio browsing system. Sections 3 and 4 provide background
on multilingual acoustic modelling using DNN/HMMs and on
semi supervised learning. Section 5 describes the data we use
and Section 6 the experimental setup. Sections 7 and 8 present
experimental results and Section 9 concludes the paper.

2. The radio browsing system
The radio browsing system currently in use includes an auto-
matic speech recognition (ASR) system configured as a key-
word spotter (KWS) as shown in Figure 1. Preprocessing in-
cludes the detection of segments of acceptable speech from a
live audio stream and the rejection of non-speech such as mu-
sic and singing. The ASR system processes the selected utter-
ances, and the resulting transcriptions (represented as lattices)
are searched for keywords of interest. This output is passed
to human analysts who filter the information to obtain struc-
tured, categorised and searchable information appropriate for
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Figure 1: The radio browsing system.

humanitarian decision making and situational awareness. De-
spite high ASR word error rates, this strategy is successful be-
cause (a) when topics of relevance are discussed, speakers usu-
ally utter several words and phrases related to the topic, and
(b) the human analysts can discard false detections. Using this
semi-automated approach, a small team of analysts can process
a large quantity of audio in near real-time while maintaining
high confidence in the final output.

Before reaching the human analysts, a set of topic-level
filters are defined to describe keyword and key phrase logic.
For example, to identify discussions related to outbreaks of dis-
ease in humans, rules such as (‘disease’ ∧ ¬ (‘crop’ ∨ ‘ani-
mal’)) are applied. The locations of matches are used to extract
clusters where multiple rules succeed, and to assign relevance
scores to each cluster. These relevance scores use Term Fre-
quency/Inverse Document Frequency (TF/IDF) weights associ-
ated with each rule to reflect that some rules are more specific
and therefore informative than others.

The human analysts assess the detected clusters in two
stages. First, the analysts listen to an extract of the orig-
inal recording and tag it as either a false match (key-
words wrongly detected), as not relevant (keywords cor-
rectly detected but in a context that was not of interest,
e.g. “. . .there has been a flood of accusation. . .”), or as
relevant. For recordings identified as relevant, there is
a second stage in which analysts provide detailed transla-
tions and category classifications (e.g. disaster.flood,
health.disease-outbreak.cholera) and type of
speaker (e.g. member of public, news-reader, high official, local
official). This results in a structured, searchable database.

As an illustration, we now consider three topics analysed in
this way: natural disaster, with a particular focus on small-scale
disaster that goes unreported in other media; health and disease,
particularly to assess experiences of healthcare service deliv-
ery; and refugees, to assess public perception of refugees, as
during the time of the study Uganda experienced a major influx
of refugees fleeing conflict in South Sudan. Some examples of
discussion on these topics are shown in Table 1, illustrating the
type of insight generated in practice with this system.1

3. Multilingual DNN/HMM acoustic models
Multilingual DNN/HMM acoustic models have been proposed
as a means of addressing a scarcity of training data in an under-
resourced target language [8, 9, 11]. Figure 2 illustrates one ar-
chitecture that has been proposed to achieve this [6]. The DNN
is trained with a relatively large training corpus from multiple
languages to provide the class conditional posterior probabili-
ties required by HMMs. In this architecture, the DNN shares
hidden layers across all languages, but each language has its
own softmax layer and its own HMM.

1Examples can be accessed online at http://radio.unglobalpulse.net.

Table 1: Examples of relevant discussion extracted by the radio
browsing system.

Topic Analyst translation

natural-disaster,
food-security

“Elephants that are suspected to have
come from South Sudan went and at-
tacked Abalo Kodi village and de-
stroyed food [crops] about 20 acres.”

refugees.camps “I stand with my two legs and say that
staying in the camps is very very good
[...] those days when people were not
in the camps they used to keep money
in anthills and under the beds, but af-
ter coming out of the camps they have
knowledge about banking.”

health.service-
delivery

“The road here is so bad that the am-
bulance got stuck in a ditch and could
not reach the hospital. People came
and had to collect the medicine and
carry it on foot to the hospital.”

health.malaria-
prevention

“People are using mosquito nets in the
wrong way, for example scrubbing
their bodies, washing dishes, making
fences around chicken houses, some
even turkey houses or pigsties.”

Assume that the inputs of the DNN are sequential acous-
tic feature vectors x1, x2, ..., xt, xt+1, ... from all languages
and that xt belongs to a specific language with output classes
ck k = 1, ...,K. The outputs of the softmax layer for that lan-
guage are the class conditional posterior probabilities:

p(ck|xt) k = 1...K (1)

The class likelihood can be calculated using Bayes’ rule:

p(xt|ck) =
p(ck|xt)p(xt)

p(ck)
k = 1...K (2)

These likelihoods are used by the respective HMM of each
language as observation probabilities.

HMM1 HMM2 HMM3

Softmax1 Softmax2 Softmax3

Shared
Hidden
Layers

Input Layer

Randomized features from all languages

Figure 2: Multilingual DNN/HMM acoustic model.



4. Semi-supervised learning

If (xi, ci) with i = 1...L denotes the L labelled acoustic vec-
tors xi ∈ X from transcribed utterances with ci ∈ C labels
and xi with i = L + 1, ..., L + U denotes the U unlabelled
vectors from untranscribed utterances (usually L << U ), then
semi-supervised learning attempts to make use of this combined
information to increase the recognition accuracy in compari-
son with supervised learning using only the labelled acoustic
vectors [17]. One straightforward approach to semi-supervised
learning is self-training [18]. In this approach, the model is
first trained with transcribed training data. This model is subse-
quently used to transcribe additional unlabelled data [19] . The
resulting transcriptions should be filtered so that only those as-
sociated with high confidence are selected. This is to avoid the
excessive injection of errors into the training set. The filtering
may be implemented by only accepting utterances that were de-
coded with likelihoods above a threshold, or by giving a higher
weight to such utterances. The selected labelled data is added
to current training set and the process can be repeated until the
error rate on a development set no longer improves.

5. Data

The datasets used in our experiments are described in Table 2.
Radio broadcasts were recorded in Ugandan English, Luganda
and Acholi and transcribed by mother-tongue speakers. This
resulted in corpora with 6, 9.6 and 9.2 hours of speech respec-
tively. The speech in these training sets as well as that in the live
data presented to the system is fast, highly spontaneous, and of-
ten has a poor signal to noise ratio due to background noise
and line quality. The Ugandan English was augmented with a
20 hour corpus of South African broadcast news [20]. Of the
three languages, Acholi is the most under-resourced, and hence
was chosen as the target language for our experiments, with
Luganda and English as the source languages for multilingual
modelling. From the Acholi data we selected a 12-minute sub-
set containing speech from 4 speakers. The remaining Acholi
data was considered untranscribed and used for semi-supervised
training. Because of the limited availability of Acholi and Lu-
ganda phonetic experts, these pronunciation dictionaries were
not as refined as that for English. The available text for devel-
oping the Acholi language model was also very limited. The
trigram language model used for decoding was obtained with
the SRILM toolkit [21].

Table 2: Datasets used for experimentation

Acholi Luganda English

Transcribed train sentences 80 8773 14898
Transcribed train speakers 4 380 889
Transcribed train speech 12m 9.6h 26h
Untranscribed train sentences 4782 —- —-
Untranscribed train speakers 199 —- —-
Untranscribed train speech 9h —- —-
Test sentences 184 —- —-
Test speech 18m —- —-
OOV rate 2.6% —- —-
Vocabulary words 15750 35098 77140
LM sentences 83831 —- —-
LM words 1.3M —- —-
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Figure 3: Acoustic model training strategy.

6. Experimental setup
Figure 3 illustrates the strategy used to train multilingual
DNN/HMM acoustic models with semi-supervised learning.
The DNN/HMM architecture used was shown in Figure 2 and
includes shared input and hidden layers and three separate soft-
max layers. The multilingual DNN/HMM model is first trained
using transcribed data from non-target languages English and
Luganda as well as 12 minutes of Acholi. This model is used
to decode the 9 hours of untranscribed Acholi data. The ut-
terances with per-frame log likelihoods above a threshold were
selected to augment the training set for subsequent model re-
training. The rejected utterances can be considered again in
subsequent iterations. The updated labelled training set is then
used to train new acoustic models. When the re-trained acous-
tic models do not deliver improved performance relative to the
previous model, the training process is stopped. Due to time
limitations, only a single iteration of this process has been per-
formed in this paper. All experiments were conducted using the
Kaldi speech recognition toolkit [22]. HMM/GMMs, SGMMs,
DNN/HMMs and multilingual DNN/HMMs (MDNN/HMMs)
were considered as acoustic modelling approaches. The acous-
tic model parameters have been optimized to achieve best re-
sults. For keyword spotting, the configuration described in [1]
was used.

7. ASR results
Table 3 indicates the word error rates (WER) achieved with var-
ious acoustic models. The first three lines of the first column
indicate the performance achieved by HMM/GMM, SGMM,
DNN/HMM acoustic models when trained using only the 12
minutes of transcribed Acholi speech. It is clear that error rates
are in all three cases extremely high. The last line of the first
column shows the WER achieved by the MDNN/HMM acous-
tic model, which was trained on 26 hours of English, 9.6 hours



Table 3: Acholi WER for various acoustic models

Acoustic %WER %WER %WER
model (12m) (12m+7h) (9h)

HMM/GMM 96.06 64.32 48.63
SGMM 92.07 62.60 47.09
DNN/HMM 99.30 65.07 46.99
MDNN/HMM 77.92 64.91 43.56

Luganda and 12 minutes of Acholi. The inclusion of data from
the other languages has led to an absolute drop in error rate
between 14% and 21%. The MDNN/HMM model was sub-
sequently used to decode the untranscribed 9 hours of Acholi
speech. Of these 9 hours, 2 hours were excluded by the log-
likelihood filtering, and 7 hours were added to the existing 12
minutes of Acholi training data. Acoustic models were re-
trained on this augmented training set and their performance
is shown in the second column of Table 3. We see that the semi-
supervised training has afforded an absolute WER improvement
of between 13% and 34% relative to the first column. It is in-
teresting to see that the SGMM offers the best performance in
this case, and not the MDNN/HMM. Finally, the third column
shows the performance achieved if all the transcriptions of the 9
hours of Acholi speech are used for training. The figures in this
column can be regarded as an upper bound of what is achiev-
able by semi-supervised training. Taking this interpretation, we
see that between 38% (for MDNN/HMM) and 66% (for other
3 models) of the possible improvement has been achieved by
semi-supervised training.

8. Keyword spotting results

The final set of experiments concern keyword search using
some of the acoustic models in Table 3. Using the setup intro-
duced in [1], the lattices generated by the speech recognizer are
passed to the keyword search. The performance of the keyword
spotter was evaluated using the NIST oracle measures, Actual
Term Weighted Value (ATWV) and Maximum Term Weighted
Value (MTWV). Table 4 shows the ATWV and MTWV values
while Figure 4 shows the detection error tradeoff (DET) curves
for various keyword spotting systems.

As expected, best keyword spotting performance is
achieved by systems that were trained on all 9 hours of man-
ually transcribed data (column 3, Table 3). All three systems
trained in this way (SGMM, DNN/HMM and MDNN/HMM)
show high ATWV and MTWV, with MDNN/HMM faring the
best although only by a small margin. This is also reflected in
the DET curves in Figure 4, where the MDNN/HMM shows the
best performance. We also note from Table 4 that, when only
12m of data is available for training, the ATWV of the KWS
system is negative and hence very poor. The MTWV, which re-
flects the best performance achievable when the decision thresh-
old is calibrated, indicates that threshold optimisation can im-
prove the system performance but that the performance remains
poor. This is also reflected in the DET curve in Figure 4. Rel-
ative to the 12-minute SGMM and MDNN/HMM systems, the
12m+7h SGMM system affords a substantial improvement in
terms of ATWV, MTWV and also the DET curve. We can also
see that the performance of the KWS system is in line with the
WERs in Table 3. Improvements in the WER also lead to im-
provements in the performance of the KWS system.

Table 4: Keyword spotting performance for various systems

Acoustic model ATWV MTWV

SGMM (9h) 0.5844 0.6484
DNN/HMM (9h) 0.5221 0.6857
MDNN/HMM (9h) 0.6400 0.6843
SGMM (12m) -0.1872 -0.0356
MDNN/HMM (12m) 0.0415 0.0726
SGMM (12m+7h) 0.1430 0.2541

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
ro

ba
bi

lit
y 

of
 M

is
s 

(%
)

Probability of False Alarm (%)

SGMM (9h)

DNN/HMM (9h)

MDNN/HMM (9h)

SGMM (12m)

MDNN/HMM (12m)

SGMM (12m + 7h)
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9. Discussion, summary and conclusion
We have shown that by combining semi-supervised learning and
multilingual DNN/HMM acoustic modelling it is possible to
achieve substantial improvements in performance over mono-
lingual systems in a very low resource scenario. Using just 12
minutes of transcribed speech in the target language (Acholi),
it was possible to train a multilingual acoustic model (Acholi,
Luganda and English) that could be used supplement the Acholi
training set for subsequent semi-supervised learning, leading to
a further substantial performance gain. The best system exhib-
ited a word error rate of 62.6%, which is a promising result in
the light of the very small target language training corpus.

It remains to be seen in ongoing work by how much the
performance can be further improved by increasing the pool of
untranscribed target language data. The effect of multiple itera-
tions of semi-supervised learning, as shown in Figure 3, must
also still be assessed. Nevertheless, the framework presents
a feasible way of implementing a radio browsing system in a
very short space of time by requiring a minimal amount of an-
notated training material in the target language. Since the setup
time is currently a key obstacle to the deployment of the radio
browsing system in new crisis areas, this opens the door to more
widespread incorporation into humanitarian relief efforts.
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