

Abstract— Automatic Speech Recognition (ASR)

systems are rapidly replacing Interactive Voice Response
(IVR) systems, as an attractive means for companies to
deliver value added services with which to improve
customer satisfaction. Such ASR systems require a
Telephony Interface to connect the speech recognition
application to the Public Switched Telephone Network
(PSTN). Commercially available telephony interfaces are
usually complex and expensive devices whose drivers and
API’s are often available only for the Microsoft
Windows operating systems. This poses a problem, as
many of the tools used for speech recognition research
and development operate on LINUX-based systems. This
paper describes the design and development of a USB-
based telephony interface offering cross-platform
portability.

Index Terms— Application Programming Interface
(API), platform-independence, Public Switched
Telephone Network (PSTN) Interface, Universal Serial
Bus, Speech Recognition.

I. INTRODUCTION

peech is the most natural form of interaction for people,
and it would thus make sense to develop technology that

would make it possible for human beings to interact with
computers by using speech. If speech and human language
can be used as a computer interface, computer services can
be accessed by anyone. This is particularly useful to the
illiterate segments of our population. Speech technology
could be used in an automated, voice-operated computer
system that could provide educational, commercial and
public services that would otherwise be inaccessible to them.

A speech-based computer interface can be adapted to
cater for indigenous languages, which will facilitate better
service delivery as more people will be able to access or
supply information in any of the official languages. This will
also stimulate development and promote the use of the
indigenous languages according to our government’s policy
of multilingualism.

Telephones are a very important access channel to such
automated speech-based systems, since the greatest part of
the South African population has access to a telephone. The
Digital Signal Processing group and the Department of

African Languages at the University of Stellenbosch are
collaborating to develop the technology that is required for
automated telephone-based multilingual dialogue systems.
Such systems require the computer speech application to
have access to the telephone network.

Commercially available telephony interfaces are generally
expensive, inflexible and platform dependant. In particular,
it has proved very difficult to integrate such a telephony
interface with open-source software and an open platform
operating system, such as Linux. Generally, the hardware
and software interface to the device is proprietary and the
manufactures do not provide documentation on how to
develop a device driver to access their hardware. In some
cases, the hardware devices are specially designed to be
operated under the Microsoft Windows operating system by
removing embedded intelligence from the device and
shifting it instead to the Windows driver and hence host
CPU. This lowers the cost of the hardware device, but places
a greater burden on the host CPU, since the telephony
interfaces often require real-time priority.

The aim of this research project is to replace a complex
and expensive telephony interface device, based on high-
speed DSP and application specific voice processors, with a
simpler, microcontroller-based device that can provide
adequate functionality to speech recognition applications.
The device must provide at least two telephony channels and
must be hardware and software portable between different
computers and operating systems.

Section II investigates the requirements of a telephony
interface to be used by an Automatic Speech Recognition
System. Section III discusses why the Universal Serial Bus
was chosen as a communication interface, as well as the
basic elements of a USB I/O device. An overview of the
system is presented in section IV, and the hardware and
software design is discussed in section V and VI
respectively. Initial tests are indicated in section VII and
conclusions are presented in section VIII, together with
proposals for future investigations.

II. REQUIREMENTS FOR AN ASR APPLICATION

Automatic Speech Recognition (ASR) is a technology that
enables a computer telephony system to recognize a user’s
spoken words via a telephone connection. The ASR
application would typically first prompt the user with
prerecorded or synthesised speech. A speech recognizer then

Development of a USB Telephony Interface Device for
Speech Recognition Applications

J.J. Müller and T.R Niesler
Department of Electric and Electronic Engineering, University of Stellenbosch, Stellenbosch.

 Tel: (021) 8084315, Fax: (021) 8083951, E-mail: {jjmuller, trn}@dsp.sun.ac.za

S

������� ����	�

��� 	�� ����

����� ������������
�� ����� � ��
�����������	���� ��
�!��#"�"�� � ����� � ��
�� $���
�����	���
����
%����#������$�&('�)�)�*
+�	���������!��
�,��.-����0/ 1�2�3�4�5�6�7

listens for a user utterance. If an utterance is detected, it
assumes that it was a reply from the user, and the application
will attempt to match this to a vocabulary of known words
and sentences in order to determine which words were
spoken by the caller.

A telephony interface suitable for use by an ASR
application would require the following features:
1) The telephony interface needs to exchange speech data

between the telephone channel and the speech recognition
application at a rate high enough to allow real-time
processing of speech data (speech recognition).

2) The telephony interface must be able to store a few
seconds of both incoming and outgoing speech data, as
the ASR application would not necessarily be able to
process speech data immediately.

3) The telephony interface must provide the means to play
audio files to the telephone channel and record speech
data from the telephone channel.

4) The telephony interface must be able to notify the ASR
application if a “barge-in” or “barge-through” condition
has occurred. Barge-in functionality allows users to
interrupt a system prompt and to speak without waiting for
the prompt to finish playing. This allows a more rapid and
natural exchange of information between the user and the
system, especially for regular users of the voice service.
The telephony interface must stop the playback of a
prompt when a barge-in has occurred.

5) The telephony interface must provide adequate echo
cancellation. Echo cancellation is an essential feature used
by speech recognition technologies to avoid confusing
echoed traces of an outgoing prompt with incoming user
speech.

6) The telephony interface must notify the ASR application
of an incoming call and when a call is dropped. It must be
able to answer incoming calls, disconnect active calls, dial
telephone numbers and transfer calls.

III. THE UNIVERSAL SERIAL BUS (USB)

A. Why USB?

The Universal Serial Bus (USB) [1] has several
advantages over traditional serial or PCI interfaces that make
it an attractive communications interface for telephony
interface [1], [5], and [6]:
1) Single Interface: A single universal interface is provided

that can be used by many kinds of devices. The cables are
simple and cannot be plugged in incorrectly. The
connectors are small and compact in contrast to other
connectors.

2) Automatic configuration: When a USB device is
connected to a powered system, it can be detected and
configured automatically.

3) No settings: USB peripherals do not have port addresses
or interrupt-request (IRQ) lines. This frees hardware
resources for use by other devices and reduces setup
requirements.

4) Easy to connect and “hot pluggable”: There is no need to
open the computer casing to install the interface. Most
computers have at least two USB ports, and more ports

can be added. USB devices can be connected and
disconnected as and when needed.

5) No power supply required: The USB bus provides +5V
and ground power lines. A device that requires up to
500mA can draw all its power from the bus, instead of
requiring its own power supply.

6) Speed: USB supports three bus speeds: high speed (480
Mbps), full speed (12Mbps) and low speed (1.5Mbps).
Every USB-capable computer supports low and full
speed. High speed was added in the version 2.0 USB
specification. Low speed devices are cheaper as the cables
do not require shielding.

7) Automatic error checking: The developer does not have
to provide error checking algorithms to ensure that data is
correctly transmitted and received. This is done by the
USB host-controller hardware.

8) Flexibility: The USB protocol defines a number of data
transfer modes which make it very flexible and suitable
for different kinds of applications.

Since USB is a standardised hardware and
communications protocol definition, it is platform
independent. Hence a USB device can be used without
modification under any operating system that supports the
USB interface and protocol, for example, Microsoft
Windows and Linux. The copyright of the USB 2.0
specification is jointly held by seven corporations (Compaq,
Hewlett-Packard, Intel, Lucent, Microsoft, NEC and
Philips). They have agreed to make the specification
available without charge and founded a non-profit
organisation, The USB Implementers Forum (www.usb.org).

B. The USB Device

A USB device requires the basic elements shown in the
diagram of figure 1 [5].

Figure 1: Block diagram of a USB I/O device.

The USB transceiver must translate the electrical
characteristics of the bus, which uses differential,
bidirectional signalling, to the TTL/CMOS voltage levels of
the Serial Interface Engine (SIE). The SIE receives bits from
the USB transceiver, performs error-checking and provides
valid bytes to the SIE interface. Similarly, bytes are received
from the SIE interface and transmitted serially onto the USB
bus. The SIE interface can perform error correction before
passing the data to the protocol controller. The protocol
controller handles error conditions, responds to USB events
such as the USB handshake protocol and formats incoming
and outgoing data to be compatible with the USB packet
protocol. The protocol controller is often implemented with
a microcontroller or DSP.

Together, these components handle the USB

��� ��������� 	
���
����� � ��

� ��� ��� � �����
������� ���

��� �
� ��� ��� � �����

��� ��� ������

������� � ��

 ��� � � ��� ��������� � ��

 ���

��� ����� ���
� ������� � ��� �

�! �"#� ���$� % &

'�(*) (

+-,*.) / ,*0

1*2
1-3

465�7�8 9;:�<
=?>6@ <BA CED�=?FG:�H :�C�5�IJIJ7�=�A CED�8 A 5�=JKL:�8NML5�<
O�PQD�=�RJ>TS;S�H A CED�8 A 5�=�PQUL5�=�@N:�<
:�=�CE:?V
46>TFGKL>6ULWYX;Z�Z�[?\6<
5�C�:�:;R�A =�];P_^65�H#` a6b�c�dJe�f�f

����� ���	��

��� � �����

� � ���	��

���	�

�	����� � � ��� � ��� � ��! � " ��� �
# �	��$%� &�� � ��')(

*	+

,�-/.10�2�3 2�4�5�6�7�8:9 7�; 2�< = >�? 2A@�2�B�C ? 2

D�&���� ���E� F�G	H �	��
1IEJ $���K

D/���EL

M���� ����NE�����%D�N����������EO
� �E� ��� ! �����

M���� ����NE�	���%D/N���������� P
� �E� ��� ! ��� �

����� ����� � ��� ����� � ����
�Q��

M���� ����NE�	���
� � ���

M���� ����NE�����
� � ���! � � 'R" ��� �

! � � 'R" ��� �

F ��NE�
D����E�E��� � ���

F�F���$�S�K

communications. But, to design a functional USB device,
some input and output are needed, together with a
microcontroller, microprocessor or DSP to control the flow
of input and output signals. Fortunately, these components
can be integrated and most vendors include these
components on a single chip, called a USB controller. The
microcontroller would most likely require some RAM and/or
ROM to store temporary data and the program code that
runs on the microcontroller (firmware).

For the purposes of this project, a USB controller that
includes a familiar general-purpose CPU, such as the 8051,
has been chosen. Cypress’ EZ-USB microcontroller family
[13] is notable because it supports a different and flexible
approach to storing firmware. Instead of storing the
firmware on-chip in non-volatile memory, it is stored on the
PC host, and downloaded to the USB controller via the USB
cable on each attachment. This makes it very easy to update
the firmware, since there is no need to replace the chip or
use a special programmer. The disadvantage is an increased
driver complexity on the PC host and a longer enumeration
time. However, once the firmware development is complete,
the program code can be stored on an on-board EEPROM.

To save development time, the firmware has been written
in the high level language C, instead of assembly language.
SDCC [2] (Small Device C Compiler), an ANSI-C compiler
designed for 8051-based microprocessors, has been used to
compile the firmware for the EZ-USB FX microcontroller.
The entire source code for this compiler is distributed under
GPL (GNU Public Licence).

IV. SYSTEM OVERVIEW

A platform-independent Application Programming
Interface (API) has been developed for speech recognition
applications to interface with the hardware telephony
interface device. In turn, this API uses functions provided by
the LibUSB [7] library to interface with the operating system
and its host controller driver (figure 2). The LibUSB library
implements a generic USB driver that provides user-space
application access to USB devices.

Figure 2: Block diagram of system hardware and software
components.

The telephony interface hardware includes a Cypress EZ-
USB FX microcontroller for interfacing with the USB bus,
as well as devices known as Direct Access Arrangements

(DAAs) to provide access to the Public Switched Telephone
Network (PSTN). Other hardware components include an
echo canceller, a Complex Programmable Logic Device
(CPLD), RAM, EEPROM, overvoltage protection and
power regulation circuitry. These are described in greater
detail in the next section.

V. HARDWARE DESIGN

The integration of the hardware components is shown in
figure 3 and discussed in the remainder of this section.

Figure 3: Conceptual overview of the hardware telephony
interface.

A. Direct Access Arrangements

Pre-packaged circuits, called Direct Access Arrangements
(DAAs) provide interfacing to the PSTN. Such devices are
also used in modems, PBX systems and computer telephony
applications. They are hybrid circuits or modules that
contain many components in a single package. A Silicon
Laboratories DAA [3] (Si3050) that meets ITU1 and ETSI2

specifications, was chosen as the DAA for use in this
project, because it eliminates the need for an analogue front
end (AFE), isolation transformer, relays, optocouplers and a
2-to 4-wire hybrid. All of these components are included in
two integrated circuits, the Si3050 (system-side device) and
the Si3018/3019 (line-side device).

The DAA provides two digital interfaces to the
microcontroller, a control interface (SPI interface) and a
PCM bus for transmitting and receiving of telephony data.
The DAA also contains a hybrid network (2-to-4 wire
converter). Since both transmit and receive signals are on the
same telephone line pair at the same time (full-duplex), a
mechanism for the removal of the transmitted signal from
the USB device’s receive path is required. The attenuation
from the transmit path to the receive path is known as the
transhybrid loss, and it is desirable to have this loss as high
as possible. Unfortunately, as voice signals are transmitted
from the four-wire to the two-wire portion of the network,
some of the energy in the four-wire section is reflected

1 International Telecommunications Union (ITU), a United
Nations organisation responsible for coordinating global
telecommunications activities

2 European Telecommunications Standards Institute (ETSI) is a
standardisation organisation of the telecommunications industry.

Cypress
EZ-USB FX

microcontroller

512K RAM

T�U U V W X X
Y Z [\] ^

_�` ^ `
a [\] ^

b�ced

fEg f hi\ j k k WEV X
Altera CPLD

Silicon
Labs DAA

Si3050

Silicon
Labs DAA

Si3050

Silicon
Labs DAA

Si3019

Silicon
Labs DAA

Si3019

l�m�n m�o�p�q�r�m
n s r�m

t�u�vA\ j X

8.192 MHz
oscillator

w t�g \ j X

x y�q�n z�{ s q�r1d�z�| | s m�|

} }a

Zarlink MT9123
Echo Canceller

20 MHz
oscillator

T�U U V W X XY ~ [\] ^

t�u�v�� �E� ^ V � �

l�m�n m�o�p�q�r�m
n s r�m

64K
EEPROM

g � u

��� �	�

�	� ���

���A�A� ���A������� ��� �)�A�����A� �A�
�A�����A�A� �)�A� � �A�����A�E ��A��¡
¢£�A�A¤��¦¥�¥A� � �)�A� � �A�A¢£§��A�A�E�A���A�A�)��¨����¦������§�©«ª�¬A¬A­�®����A�
�A��¤A� �A¯�¢±°��A��² ³�´AµA¶�·A¸A¹

(because of an impedance mismatch at the hybrid circuit),
resulting in echoed speech. The actual amount of signal that
is reflected depends on how well the balance circuit of the
hybrid matches the two-wire line. Additional echo-
cancellation circuitry can further reduce the echo.

The DAA interface includes a codec (coder/decoder) that
uses A-law or µ-law companding. By coding the telephony
data, redundant data is discarded. This conserves bandwidth,
as less data is transmitted on the USB bus. The signal is then
reconstituted on the receiving end (host PC).

The telephony interface must provide high-voltage
isolation of the USB device circuitry (digital) from the
telephone network (analogue). This is important, as the
voltages on the telephone network are high in comparison
with the voltages in the digital circuitry of the USB device.
The DAA uses a high-voltage capacitor for the
communication link across an isolation barrier, where the
isolation barrier is a physical separation of the analogue and
digital traces on the Printed Circuit Board (PCB). Silicon
Laboratories patented this technique as the ISOcap
technology. It modulates the analogue data with a high-
frequency carrier (2 MHz) and passes it across the
capacitors to a receiver on the other side of the DAA. An
additional path is provided for control and status data, using
another capacitor. This capacitive-isolation approach saves
board space and makes PSTN integration easy. The
disadvantage is that problems with Electromagnetic
Interference (EMI) can occur.

Multiple DAAs may be connected in a daisy-chain
configuration to provide access to multiple telephony
channels.

B. Echo Cancellation

Echoes have many sources, but in PSTN networks, the
primary source of echo is hybrid echo. Hybrid echo occurs
because the impedance mismatch between the two-wire local
loop and the four-wire PSTN network causes a reflection of
the outgoing signal. “Hybrids” are used to join the two-wire
sections with the four-wire sections, as shown in figure 4.

The Echo Return Loss (ERL) between the transmit and
receive paths of the DAA was measured at 22B for a test
scenario. According to studies [4], the echo signal will be
negligible when the ERL is approximately 55dB or more.

Figure 4: Echoes in the PSTN network (adapted from [16]).

 An echo canceller would typically provide an additional
30dB to 40dB of echo attenuation. Zarlink [4] provides a

dual channel echo canceller that provides echo cancellation
for a tail length [16] of 64 milliseconds. The echo canceller
is based on an adaptive FIR filter (figure 5) that subtracts the
estimated echo ()(ˆ ir) from the incoming near-end signal

()(ix). It uses a convergence algorithm to continuously

adapt the filter coefficients to minimize the cancellation
error ()(ie) when no near-end signal ()(ix) is present.

Figure 5: Echo canceller
configuration.

The Zarlink MT9123 echo canceller has double-talk
detector with a programmable double-talk-detection
threshold. Filter adaptation is difficult when double-talk
occurs, therefore the echo canceller will stop adaptation
during a double-talk condition. A Non-Linear Processor
(NLP) removes the residual noise by muting the signal that
falls below a certain threshold. Activation of the NLP results
in an additional attenuation of the received signal. To
prevent a perceived decrease in background noise due to the
activation of the NLP, comfort noise injection is performed
to keep the perceived noise level constant.

C. Altera Complex Logic Programmable Device (CPLD)

The Silicon Laboratories DAAs requires a 1.024 MHz
PCM bus clock signal and an 8 KHz frame signal. These
signals are generated by an Altera Complex Logic
Programmable Device (CPLD) [8]. The Zarlink echo
canceller requires enable strobes to define the channel
timeslots to use for PCM data transfers. These strobes are
also generated by the CPLD.

The EZ-USB FX microcontroller has no dedicated ports
available to interface with the PCM transmit and receive
signals. Hence we employ the CPLD to convert the serial
PCM stream to bytes and vice versa, which can be read and
written to the parallel slave FIFO buffers of the
microcontroller. The FIFO buffers are slave in the sense that
their read, write and output enable signals may be supplied
by external logic (in this case the CPLD). The conversion
between bytes and the serial PCM streams is performed by
using two shift registers in the CPLD firmware design.

The other task of the CPLD is to perform bank switching
of the 512K external RAM, as the microcontroller can only
access one 64K bank at a time (16-bit address bus).
Additional banks are required for temporary storage of
telephony data.

The CPLD design has been carried out by creating VHDL
modules and by implementing existing Altera
megafunctions.

� ����� � �
��	

�	
� ����� � � � ����� � �

PSTN Network

������ ��� � ����� ����� ����� � ��� � � ��� ��� � ��� � � �!� � ����� ���
������ ��� � � ��� ���

" #�$�% & #�" '
#�(�) *

+ $�% & #�" '
#�(�) *

, -�. / 0�1 2 3�4 5�5�6�798 6�-�: : 5�. ;

<�5�6�=�1 2�-�. >?. 5�@ : 5�6 A B =�1C=�@�@ -D. / 5E1 2
A -�: F 5E. 3DBG�1 -�:H�5�@ : 5�6 A B =�1C=�@�@ -D. / 5E1 2

A -�: F 5�. 3DBG�1 -D:

I J K L M J N O J L N M P
L J Q
M L R O L S K T U J

USB Telephony Interface device V

W

XEY?Z�[\YD]_^�YE`ba a `bc d�e?f g h i

j

kEl�m no

p

q

rEsbt t ubv�w?x�u�u r?y{z�|D} ~
|�� ����} v u�t ��rDs_tDt ���bx�~

v |�} ~��

�� |D} ~ � z�|�} ~ � v |D} ~���v |�} ~�

� �D� �

����� ����� ��� �
���_�b� � �b�E�?��� ��������� � �C� ���D�C� b¡ ¢
£ ¤ ¥ � � ���
¦

§?¨ �E� �b©ª�?��� � �?�«� £ ¤ ¥ � � ���

¬®­{¯{°�±{²{³�´¶µ\· ³�¸ ¹�º{´¼»½²{¾ ²{¹�­{¿¼¿¶¯{´{¸ ¹�º{°�¸ ­{´¼ÀÁ²{° ÂÁ­{³�Ã�ÄÅº{´{Æ¶µ®Ç{Ç{¾ ¸ ¹�º{°�¸ ­{´{ÄÅÈÁ­{´{·�²{³�²{´{¹�²¼É�¬®µ®»ÊÀÁµ®ÈÁËÊÌ{Í{Í{Î¼Ï®³�­{¹�²{²{Æ{¸ ´{Ð{ÄÅÑ®­{¾CÒ Ó®Ô{Õ{Ö¼×{Ø{Ù

D. EZ-USB FX microcontroller

The EZ-USB FX microcontroller [13] is a general
purpose 48MHz microcontroller, with an enhanced 8051
core that uses four clock cycles per instruction cycle. The
microcontroller has a combined 8K internal memory, but can
be expanded by adding 64K of external RAM. USB data for
bulk and interrupt transfers [1] are stored in fourteen 64-byte
endpoint buffers, and can be accessed via registers. The
microcontroller has two 64-byte buffers for incoming FIFO
data, and two 64-byte buffers for outgoing FIFO data, which
can also be accessed via registers in RAM.

The EZ-USB FX initialises and enumerates as a “default
USB device” [14] when connected to the USB bus. The
processor core contains firmware instructions that are able to
download new firmware from the host PC. Once the
firmware is downloaded, the CPU is reset; the device is
“renumerated” [14] and the 8051 starts executing the new
firmware. The core can only download firmware to internal
RAM. Since the firmware that is developed for this project
is larger than the internal RAM size of the controller,
external RAM must be utilised for code RAM. To download
firmware code from the host PC to internal and external
RAM of the microcontroller, a special bootloader was
developed. The bootloader is downloaded to the
microcontroller’s internal RAM, from where it writes the
firmware code to external RAM. Firmware code
downloading to external RAM is thus a three-stage process,
but once development is complete, the firmware can be
stored in an on-board EEPROM, and the bootloader will no
longer be needed.

The EZ-USB FX does not include a dedicated SPI port
for communication with the echo canceller and DAAs. A
method commonly referred to as “bit banging” is used to
create a software-based SPI port. This method uses general-
purpose I/O lines to emulate a serial port.

Data is transferred to and from the USB endpoint buffers
and the slave FIFO buffers by first storing it in a temporary
RAM buffer. The EZ-USB FX incorporates a Direct
Memory Access (DMA) engine that transfers data between
internal and external RAM without 8051 intervention. Using
the DMA, data can be transferred very quickly between
different RAM locations (as fast as one byte per cycle of a
48MHz clock).

During an active telephone call, voice-activity detection is
performed to determine if the user is speaking. Voice-
activity detection is required to determine if a double-talk
condition has occurred or to start the recording of speech if
sufficient speech energy is present in the incoming signal.
The echo canceller’s double-talk flag [4] indicates when the
input signal is greater than the expected return echo level.
The microcontroller firmware reads the double-talk flag, and
if it is active, the energy within a window period is
calculated. If the energy present in the window period is
above a minimum threshold for speech, a barge-in condition
is indicated. The signal path for each telephone call will
differ, and therefore the noise present in the incoming signal

might differ between calls. The minimum speech threshold
value is adapted for each telephone call to account for
differing channel conditions. To determine the threshold
value, a measurement is taken at the beginning of each
telephone call, when no user speech is expected. This gives
an indication of the noise present in the telephone channel
upon which a speech threshold value can be calculated.

To summarise, the firmware running on the EZ-USB FX
microcontroller performs the following functions:
1) Sets up the I/O pins and 8051 interrupts that are allowed.
2) Handles standard USB device, interface and endpoint

requests [1].
3) Initialises and controls the operation of the DAAs and

echo canceller.
4) Handles commands from the API, such as requests for the

size of the hardware buffers and channel status, and
commands such as dialing numbers, answering and
disconnecting active calls etc.

5) Detects if a DAA is receiving a ringing signal, if it is off-
hook or if the line is occupied by another off-hook
telephone.

6) Moves data between the FIFO buffers, RAM and endpoint
buffers to exchange data between the API and the
telephone channel during an active call.

7) Perform voice-activity detection (VAD) to determine
when the user is speaking (for recording purposes and to
detect a barge-in condition).

E. Other hardware components

A 64K serial EEPROM [15] is connected to the I2C port of
the EZ-USB FX. This EEPROM is used to store the final
firmware code that will run on the microcontroller.

The line-side DAA connects directly to the telephone line
without the need of an isolation transformer. Voltage
limiting is thus required to prevent damage from the line
transients caused by lightning and power line crosses. A
Totally Integrated Surge Protector (TISP) [9] was used for
this purpose.

Noise transients on a USB cable can cause damage to the
USB device if they are of sufficient duration or magnitude.
To provide additional electrostatic discharge (ESD)
protection to the EZ-USB FX microcontroller, a transient
voltage suppressor is connected to the two data lines (D+,
D-) of the USB bus. A voltage suppressor, SN75240 [10]
from Texas Instruments was selected for this purpose.

The majority of the hardware components in this design
require a 3.3V power supply. A 5V power supply is
delivered by the USB bus to the device, where a voltage
regulator [11] provides the 3V supply. The Zarlink Echo
Canceller is a 5V CMOS device and some of the device’s
inputs are not compatible with 3V TTL logic levels. To
translate the signals to the echo canceller from 3V TTL logic
levels to 5V CMOS logic, a Voltage Translator [12] is used.

������� ����	�

��� 	�� ����

����� ������������
�� ����� � ��
�����������	���� ��
�!��#"�"�� � ����� � ��
�� $���
�����	���
����
%����#������$�&('�)�)�*
+�	���������!��
�,��.-����0/ 1�2�3�4�5�687

VI. SOFTWARE DESIGN

A. LibUSB

LibUSB [7] (http://libusb.sourceforge.net) is a generic
USB driver and open-source library that provides user level
access to USB devices. It supports Linux, FreeBSD,
NetBSD, OpenBSD, Darwin and MacOS. LibUSB-win32
(http://libusb-win32.sourceforge.net) is a ported version of
LibUSB to the Windows operating system, but its API
remains the same.

The LibUSB driver fits into the layered driver
architectures of the Linux and Windows operating systems,
and communicates directly with the host controller driver.
The LibUSB API has functions to search the busses for a
device, to initialise, open and close a device and to perform
bulk, control and interrupt transfers [1] to and from a device
endpoint. The USB Telephony Interface Device’s API uses
these functions to communicate with the device.

B. Application Programming Interface (API)

The API for the Telephony Interface must remain
platform- independent, therefore programming was done in
ANSI C, and only ANSI C functions and libraries were used.
The API for the device provides functions (via the LibUSB
driver) to perform the following:
1) Search for the device on the USB bus, open, close,

initialise the device.
2) Create buffers in PC RAM where incoming and outgoing

telephony data can be stored.
3) Record incoming telephony data to a file or pass it to a

speech recognition application.
4) Open an audio file and send the audio data to the

telephone channel.
6) Set the behaviour of the voice-activity detector.
7) Set parameters of the device, such as maximum buffer

size.
8) Answer an incoming call, disconnect an active call or
make a new call by dialing a number.

VII. INITIAL TESTS

The DAAs, CPLD, microcontroller and echo canceller
have been tested individually. Currently, the bank switching
scheme (memory access) are being implemented and tested
for the final prototype. Further testing will include the
integration of the system into a practical speech recognition
application.

VIII. CONCLUSION

Although the EZ-USB FX microcontroller has limited
capabilities, it successfully demonstrated the feasibility of
designing a telephony interface device with a general-
purpose CPU, low cost components and non-proprietary
software tools and libraries.

In order for the microcontroller to provide at least two
telephony channels, the firmware code had to be optimised
extensively. If more telephony channels are required, a
secondary CPU will be required. Alternatively, a more

powerful microprocessor with USB capabilities (such as
Freescale’s ColdFire processor) could be used. Another
future possibility is to adapt the design to provide for ISDN
channels, as single-chip ISDN interfaces are becoming
available on the market.

REFERENCES

[1] Compaq Computer Corporation, Hewlett-Packard
Company, Intel Corporation, Lucent Technologies Inc,
Microsoft Corporation, NEC Corporation, Koninklijke
Philips Electronics N.V, “Universal Serial Bus
Specification, Revision 2.0” , April 27, 2000

[2] Sandeep Dutta, “SDCC Compiler User Guide, SDCC
2.4.0”, February 24, 2004. http://sdcc.sourceforge.net/

[3] Silicon Laboratories, “Si3050 Global Voice/Data Direct
Access Arrangement”, Rev 1.0, 2003.

[4] Zarlink Semiconductor “CMOS MT9123 Dual Voice
Echo Canceller Data Sheet”, Issue 1, October 1996.

[5] John Hyde, “USB design by Example, A Practical
Guide to Building I/O Devices, Second Edition”, Intel
Press, 2001

[6] Jan Axelson, “USB Complete, Second Edition”,
Lakeside Research, 2001..

[7] Johannes Erdfelt, “LibUSB Developers Guide”,
http://libusb.sourceforge.net/doc

[8] Altera, “Max 7000 Programmable Logic Device
Family”, July 1999, ver. 6.01 .

[9] Power Innovations Limited, UK, “TISP4125F3,
TISP4150F3, TISP4180F3 Symmetrical Transient
Voltage Suppressors”, March 1994, Revised September
1997.

[10] Texas Instruments, “USB Port Transient Suppressors,
SN65220/65240/75240”, July 2004.

[11]Maxim, “5V/3.3V or Adjustable, Low-Dropout, Low
IQ, 500mA Linear Regulators. MAX603/MAX604”,
September 1994.

[12]Philips Semiconductor, “74LVC425A Octal dual supply
translating transceiver; 3-state”, 30 March 2004

[13]Cypress Semiconductor, “CY7C6401/603/613 EZ-USB
FX USB Microcontroller Data Sheet”, 2000

[14]Cypress Semiconductor, “EZ-USB FX Technical
Reference Manual”, version 1.3, 2000

[15]Microchip Technology Inc., “24AA64/24LC64 64K I2C
serial EEPROM”, 2003

[16]Brooktrout Technology, “Echo Cancellation for ASR
applications”, Keith Byerly, April 2002.

Jaco Müller (main author) was born in Somerset West,
South Africa, in 1980. He completed his secondary
education in 1998 and obtained his B.Eng (Electric and
Electronic) degree from Stellenbosch University in 2003. He
is presently studying towards an M.Sc at the same university
and part of Telkom’s Centre of Excellence (CoE) program.

Thomas Niesler obtained the B.Eng and M.Eng degrees
from the University of Stellenbosch in 1991 and 1993
respectively. He subsequently obtained a Ph.D. from the
University of Cambridge, England, in 1998. Since
November 2000 he has been senior lecturer at the University
of Stellenbosch. His research interests lies in speech
processing, pattern recognition and statistical modelling. He
is also the supervisor of the first author.

������� ����	�

��� 	�� ����

����� ������������
�� ����� � ��
�����������	���� ��
�!��#"�"�� � ����� � ��
�� $���
�����	���
����
%����#������$�&('�)�)�*
+�	���������!��
�,��.-����0/ 1�2�3�4�5�6�7

