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Introduction

 Cough monitoring is key
to tracking TB patients.
* The accuracy of automatic

Top two cross-validated results for each feature
type and segment/frame length (ms).
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e Which acoustic features are most effective?

e Over which timeframe should they be
calculated?

« How best to apply them?

Evaluation of Mel Filter Bank Dimension

Cough classification performance as a function
of the filter bank dimension for (a) MFB features
and (b) MFCC features.
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- Audio Set (provided by Google)
- Freesound.org database
e 5 sound categories were considered.

(a) MFB (b) MFCC

Evaluation of MFCC Derivatives

Cough classification performance in terms of

Sneeze: 1013 Cough: 3114

AUC when using MFCCs with and without
/ derivatives.
Domestic/home
Speech: 2326 sounds: 1/027 Feature DNN | CNN | LSTM
RS ' MFCC 0.914 | 0.933 | 0.932
MFCC+A+2A 0.904 | 0.920 | 0.905
. L-MFCC 0.934 | 0.954 | 0.931
Throat clearing: 301 L-MFCC+A+2A | 0931 | 0.945 | 0.940

e 7781 sounds from 3132 files.

« 1151 files were used to collect coughs, which
suggests a high number of individuals for this
particular category.

Test Set Results

The baseline system used MFCCs with
derivatives and a 25 ms frame shifted by 10 ms.

e Other studies considering coughing generally DNN CNN LSTM
. . Feature Acc. AUC Acc. AUC Acc. AUC
contain recordings from fewer than 20 people. BT 0795 1 0865 T 0843 0915 T 0815 0863
MFECC 0.805 0.881 0.853 0.925 0.847 0.919
[.-MFCC 0.857 0.927 0.876 0.944 0.845 0.918
o STFT 0.869 0.932 0.877 0.946 0.873 0.938
Experimental Setup MFB [ 0.883 | 0.940 [ 0.912 | 0.965 | 0.866 | 0.912
« Evaluated features: STFT, MFB and MFCC.
e Classifiers evaluated: Conclusion

- DNN with three 128-unit hidden layers
- CNN with one convolutional layer and two
128-unit fully connected layers
- LSTM with two 832-unit layers
» Two-class softmax output layer for all models.
« Stratified cross-validation applied.

« STFT and MFB features perform best.

* 040 ms segments and 64 ms frames perform
well across all classifiers and features.

» As for speech, 40-dimensional mel filter banks
provided good results.

 For MFCCs, liftering helps. Derivatives do not.
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