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Abstract—We present baseline language identification results
for South African languages using the Lwazi corpus. Four
different strategies to perform 11-way classification are imple-
mented: phoneme recognition followed by language modelling
(PRLM), parallel PRLM, and two analogous approaches based
on word-level recognition. The optimal system uses a parallel
word recognition followed by language modelling approach with
trigram language models, and obtained an ID error rate of 0.418,
a decision cost of 0.182, and a confusion of 2.92. West Germanic
languages were easiest to identify.

I. INTRODUCTION

Automatic language identification (LID) is a growing appli-
cation of speech processing technology. LID has many practi-
cal uses, which range from pre-selecting a speech recognition
system for a certain language to routing phone calls to human
emergency line operators depending on the language of the
speaker. In South Africa, this is especially relevant, since it
is common for different languages to be spoken in the same
settings and locations. Accurate language identification would
therefore be particularly helpful in making many resources and
services more easily and publically available.

Until recently, almost no South African data was freely
available for the development of speech technology. The Lwazi
corpus provides new opportunities in this respect. This paper
presents the results of a baseline language identification system
developed using the Lwazi corpus.

Two standard strategies to perform LID are investigated:
phoneme recognition followed by language modelling (PRLM)
and parallel PRLM (PPRLM) [1], [2]. In addition, we use
two similar strategies based on word rather than phoneme
recognition: word recognition followed by language modelling
(WRLM) and parallel WRLM [3].

II. THE LWAZI ASR CORPUS

The Lwazi speech corpus provides orthographically anno-
tated speech data for all eleven South African languages. It
was originally developed with the goal of speaker-independent
speech recognition in mind. It consists of telephone recordings
of approximately 200 speakers per language. Each speaker
provides approximately 30 utterances, consisting of phrases
from phonetically balanced corpora and answers to open and
yes/no questions [4]. The utterances contain no code-switching
or non-language words. From a LID perspective, the corpus is
relatively small, consisting of between 3 and 8 hours of speech

per language. It is freely available under an open content
license [5].

The different languages in the Lwazi corpus, their language
families, and the size of their vocabularies and phone sets are
shown in Table I. The speech data is annotated orthographi-
cally, and accompanied by baseline pronunciation dictionaries
which are an expansion of the original Lwazi dictionaries [6]
created using grapheme-to-phoneme prediction strategies [7].
Aside from the phone types in Table I, the corpus includes
phone markers for silence and speaker noise.

A. Data Sets

The corpus was split into training, development and evalu-
ation sets. The evaluation sets used for this research coincide
with the fixed Lwazi evaluation sets of [7], and consist of
a total of approximately 1,200 utterances from 40 randomly
selected speakers per language. The development sets consist
of approximately 600 utterances from a further 20 speakers per
language, also randomly chosen. The training sets contain the

TABLE I
PHONE SETS AND VOCABULARY SIZES FOR THE ELEVEN LWAZI DATASETS

(EXCLUDING SILENCE AND NOISE MARKERS).

Code Language Language
Family

Phone
types

Word
types

afr Afrikaans West
Germanic 37 1,585

eng SA
English

West
Germanic 44 2,112

nbl isiNdebele Nguni 47 4,751
ssw siSwati Nguni 41 5,092
xho isiXhosa Nguni 50 4,727
zul isiZulu Nguni 45 5,376

nso Sepedi Sotho-
Tswana 30 3,276

sot Sesotho Sotho-
Tswana 29 2,568

tsn Setswana Sotho-
Tswana 34 2,980

tso Xitsonga Tswa-
Ronga 52 2,747

ven Tshivenda Venda 40 2,441

Overall 110 31,757



TABLE II
DESCRIPTION OF THE LWAZI TEST SETS.

Development Evaluation

Lang. Phone
tokens

Word
tokens

Dur.
(mins)

Phone
tokens

Word
tokens

Dur.
(mins)

afr 14,080 3,574 26 28,724 7,165 51
eng 16,757 4,224 31 33,061 8,373 63

nbl 27,327 4,097 62 54,428 8,185 121
ssw 26,477 4,035 64 53,154 8,010 128
xho 21,162 3,521 51 45,275 7,408 105
zul 22,603 3,597 53 46,682 7,568 115

nso 23,379 5,948 58 47,657 1,1893 127
sot 20,082 5,003 44 38,280 9,628 85
tsn 17,739 4,799 43 38,280 9,891 85

tso 19,032 4,607 51 37,560 9,067 92

ven 17,383 4,143 42 34,140 8,143 87

Total 226,021 47,548 525 455,954 95,331 1,068

TABLE III
DESCRIPTION OF THE LWAZI TRAINING SET.

Lang. Phone tokens Word tokens Dur. (mins)

afr 98,427 24,754 179
eng 112,388 28,302 207

nbl 193,987 29,229 432
ssw 180,143 27,456 442
xho 166,502 27,711 406
zul 151,270 24,363 360

nso 151,680 38,682 385
sot 136,536 34,007 300
tsn 131,737 35,694 339

tso 146,736 35,615 378

ven 119,140 28,817 305

Total 1,588,546 334,630 3,733

TABLE IV
SIZES OF THE LANGUAGE MODEL TRAINING SETS, AFTER REMOVAL OF
UTERRANCES OVERLAPPING WITH THE DEVELOPMENT OR EVALUATION

SETS.

Phonemes Words Utts

Lang. tokens % re-
maining tokens % re-

maining
% re-

maining

afr 16,575 16.8% 4,735 19.1% 22.4%
eng 17,989 16.0% 5,279 18.7% 22.9%

nbl 59,118 30.5% 9,882 33.8% 34.8%
ssw 52,572 29.2% 8,921 32.5% 36.0%
xho 69,063 41.5% 12,136 43.8% 43.7%
zul 67,166 44.4% 11,399 46.8% 48.1%

nso 39,039 25.7% 9,808 25.4% 33.8%
sot 39,788 29.1% 10,224 30.1% 32.1%
tsn 44,769 34.0% 12,229 34.3% 37.6%

tso 40,693 27.7% 10,110 28.4% 30.5%

ven 33,551 28.2% 8,046 27.9% 30.4%

Total 480,323 30.2% 102,769 30.7% 33.9%

remaining data, consisting of roughly 4,000 utterances from
approximately 140 speakers per language. The utterances are
fairly short, with an average length of 5 seconds each. The
total duration and number of phonemes in each of the test
sets is shown in Table II, and those in the training set are
shown in Table III.

The Lwazi corpus contains many phonetically rich utter-
ances. Answers to questions are generally short and formulaic,
and the phonetically balanced sentences which speakers were
asked to read are often repeated up to 15 times throughout the
corpus. As a result, many of the utterances in the test sets also
occur verbatim in the training set. To avoid positive bias in
language identification, these utterances were removed from
the training set prior to language model training.

The prompts used to obtain phonetically balanced utterances
are not publically available, so recurring sentences were de-
tected using exhaustive pairwise string alignment between the
training and test set word transcriptions. Training utterances
longer than five words were removed if they resulted in a
match accuracy of at least 60% with any of the test sentences.
Training utterances consisting of five or fewer words were
removed if a perfect match (disregarding silence and noise
markers) occurred in one of the test sets.

The amount of training data available for language mod-
elling was significantly reduced by this process, as shown in
Table IV. Not every language is affected equally: Afrikaans
and English suffer the greatest reductions, whereas isiXhosa
and isiZulu are affected the least. This results in language
model training sets of disparate sizes.

III. BASELINE SYSTEM DESCRIPTION

In the first two experiments, LID is performed through
PRLM and PPRLM, two standard approaches to language
identification [1], [2]. PRLM uses a single-language phoneme
speech recognition system to tokenise the training and test data
for each language. One n-gram language model is then trained
on the resulting training set phoneme sequences for each
language. Identification is performed by using these language
models to score the phoneme sequence of a test utterance.
The language model which produces the highest log likelihood
score is selected as the most likely candidate for identification.

It is not necessary for the front end phone recognisers
to be trained on speech in the languages to be identified
for LID to be feasible. For this reason, speech recognition
is usually carried out using acoustic models trained on the
CALLFRIEND corpus [8]. However, since telephone speech
data are available for each of the 11 South African languages
in the Lwazi corpus, our experiments will use acoustic models
trained on these data.

PPRLM functions similarly to PRLM, but includes a set of
single-language phoneme recognisers that tokenise the input
utterance in parallel. Language models are obtained for the
tokenised training sets of each language, using each available
tokeniser. Hence, this strategy employs NL × NT language
models, where NL = 11 is the number of languages, and NT



is the number of tokenisers, in our case also 11. For each
language, the log likelihoods of language models resulting
from all acoustic models are considered, and the global
optimum identified. This has the added benefit of incorporating
language-specific phonotactic constraints during recognition,
so that acoustic as well as phonotactic likelihood plays a role
in identification. PPRLM has been shown to be an accurate
and reliable method of LID as compared to other methods [1].

The methods used for word-based language identification
are analogous with the PRLM and PPRLM methods, with the
exception that single-language word recognisers are used in
place of phoneme recognisers. WRLM uses a single-language
word recogniser on the training and test sets of each language,
and trains n-gram word language models on the word se-
quences obtained from the training sets. Identification of an
utterance is then performed by scoring its word transcription
using each language model, and selecting the language with
the highest log likelihood, as in PRLM.

PWRLM functions the same as PPRLM, but obtains a
global optimum from the log likelihoods of the WRLM word
language models using the acoustic models, instead of the
PRLM language models. Although WRLM and PWRLM are
not standard approaches, word-based identification methods
have proven successful in prior studies [3].

A. Acoustic models
A set of HMM acoustic monophone models was trained us-

ing the full training set for all languages. Speaker-independent
diagonal covariance monophone models with three states per
model and one Gaussian mixture per state were obtained
through embedded Baum-Welsh re-estimation, and normalised
using cepstral mean normalization. Each speech frame was pa-
rameterised as a 39-dimensional feature vector which consisted
of 13 Mel-frequency cepstral coefficients (MFCCs) and their
first and second differentials.

Once a first set of acoustic models had been obtained from
a flat start using the first pronunciation of each training word
in the dictionaries, a Viterbi word recogniser was used to re-
align the training set to account for pronunciation variants.
The models were re-aligned and re-trained a maximum of 8
times, after which the transcriptions were seen to stabilise.

The monophone models were expanded to crossword tri-
phone models through decision tree state clustering [9]. Noise
and silence models were used as context phonemes but not ex-
panded to triphones. The triphone models were then improved
by gradually increasing the number of Gaussian mixtures,
and performing four iterations of embedded re-estimation after
each increase. This procedure was continued until the models
had 8 mixtures per state, after which phoneme and word
recognition results on the development set no longer improved
significantly.

Using the full training set in acoustic modelling should
not result in a positive bias in identification results, since the
recognisers are only used to obtain transcriptions of the same
training sets for language model training. The acoustic models
are trained on the training set, and the phonotactic and word
sequence language models used for LID are trained on the

strings recognised in that same set, so the error rate on the
training data is expected to be lower than that on the test data.
Any resulting bias in LID scores would thus be negative.

B. Phoneme and word recognition

For phoneme recognition, we trained backoff bigram models
on the reduced training sets described in Table IV. These are
not the same language models used for subsequent language
identification. Language model probabilities were calculated
with an absolute discount ratio of 1.0. Phoneme recognition
for PRLM purposes is commonly performed using flat lan-
guage models, but we found that using bigram models led to
improved identification results. Word recognition was similarly
performed using backoff bigram language models, trained on
the word transcriptions of the same reduced training set, with
an absolute discount ratio of 1.0.

Both phoneme and word recognition was performed us-
ing the HTK hidden Markov model (HMM) based speech
recogniser, which performs a time-synchronous beam search
using the Token-Passing procedure [10]. The same recognition
parameters were used for all languages. For both phoneme and
word recognition, a word insertion penalty of −10 was used.
A language model scaling factor of 6 was used for phoneme
recognition, and a factor of 10 for word recognition. These
values were found to produce optimal overall recognition error
rates on the development set.

Eleven single-language phoneme and word recognisers were
obtained in this way, one of each for each language in the
Lwazi corpus. Recognition was performed on the training and
test sets of all languages using each recogniser. This resulted in
121 sets of phone transcriptions and an equal number of word
transcriptions, each split up into a training, development, and
evaluation set.

C. Phonotactic and word sequence language models

For each of the eleven languages, eleven phoneme and word
language models were trained on the transcriptions of the
reduced training set obtained using the corresponding set of
acoustic models. Both phoneme and word language models
were optimised on the development sets obtained using the
same acoustic models. Optimisation led to a constant discount
value of 0.7 for all four systems.

The language model order was gradually increased until
identification results no longer improved on the development
set. For PRLM and WRLM, each individual recogniser was
optimised in this way. For PPRLM and PWRLM, all language
models were trained with the same order, and an optimum was
determined for the overall system.

D. Gaussian Back-end

Using multiple acoustic phoneme or word recognition sys-
tems in parallel, the information of these needs to be fused.
This is accomplished by combining all scores for a particular
test segment (in our case 121, from NPR = 11 acoustic PR
outputs each modeled with NL = 11 phone sequence LMs)
in a Gaussian back-end model [2], e.g., Linear Discriminant



Analysis. The parameters of this model (one mean vector
per language and a shared covariance matrix) need to be
trained; we use the development test segments for that. The
Gaussian back-end produces for each test segment x one
log-likelihood li per hypothesis language i. Together with a
prior over languages πi these likelihoods can be converted to
posterior probabilities P (i | x) using

P (i | x) = πi exp li∑
j πj exp lj

. (1)

E. Evaluation metrics

We evaluate our language identification systems using the
independent evaluation set of segments, using several different
evaluation metrics. The first simply is the language identifica-
tion error rate. The language ID error rate can be computed
using

ELID =
1

NL

NL∑
i=1

1

||Ti||
∑
j∈Ti

1− δ(i, argmax
k

P (k | xj)), (2)

where δ(i, j) is the Kronecker delta function counting equal
language indices, j indexes the trials in set Ti of language i,
and || · || is the cardinality operator counting trials. Effectively,
ELID is the average language identification error rate com-
pensated for evaluation priors. Note that when assuming flat
priors πi = 1/NL the maximum posterior language probability
is equal to the maximum language likelihood, and (1) is not
needed. The language identification error rate is sensitive to
a per language log-likelihood bias. If the recogniser gives
relatively higher log likelihoods to one language than another,
the confusion matrix will become asymmetric which typically
leads to more errors. Although ID error rate is not a standard
measure in LID, it is a meaningful evaluation metric when
classification is performed by maximum likelihood and eval-
uation is performed with equal priors, as is the case in our
research.

One may argue that the assumption of equal priors is not
very realistic, so we would also like to probe the prior distri-
bution space at several other points. The way this happened in
NIST Language Recognition Evaluations [8] from 2005–2009
was by using a varying prior distribution, and evaluating using
a decision-cost function paradigm, by computing the “average
cost” Cavg over these distributions. In our terminology, for
every test segment, the prior is probed at NL points, with k
running over the target languages 1, . . . , NL

πi =

{
Ptar for i = k

(1− Ptar)/(NL − 1) for i 6= k,
(3)

where Ptar = 1
2 represents the prior of the target language.

For a given test segment j, a posterior distribution is com-
puted for every prior distribution, and decisions are made by
thresholding the posterior P (k | xj) at 1

2 . These decisions can
lead to ‘false alarms’ if j 6= k ∧ P (k | xj) > 1

2 or ‘misses’
if j = k ∧ P (k | xj) < 1

2 . The false alarm proportions P jk
FAare computed for every target language k and test language j,

and averaged over j and k,

PFA =
1

NL(NL − 1)

∑
jk

P jk
FA. (4)

Similarly, the miss proportions P k
miss are computed for each

target language k, and averaged

Pmiss =
1

NL

∑
k

P k
miss. (5)

The final NIST evaluation metric is the cost function

Cavg = (1− Ptar)CFAPFA + PtarCmissPmiss, (6)

where the cost parameters CFA = Cmiss = 1.
The way we computed Cavg from the language posteriors

and the true language labels already makes this metric cali-
bration sensitive. Another measure that is calibration sensitive
is the multiclass cross entropy,

Hmc =

NL∑
i=1

πi
||Ti||

∑
k ∈ Tk − logP (i | xk) (7)

which measures the uncertainty in the posterior of the true
language. This metric can be translated into a perplexity

Perplexity = expHmc (8)

which is the average number of languages you would still
have to choose from after consulting the language recogniser.
We use a slightly different version of this metric, which was
first used in language recognition in the Albayzin language
recognition evaluation in 2012 [11], the confusion

C = Perplexity − 1 (9)

All three evaluation measures described above are calibration
sensitive, although no calibration was performed for this
particular research. Performances are not reported in equal-
error-rate (EER) because it is an ill-defined metric for language
recognition purposes [12].

IV. RESULTS

A. PRLM

PRLM results were obtained using the language models
trained on the transcriptions of one speech recogniser at a time.
The optimal n-gram order for the obtained language models
and the identification results we obtained using this method
are reported in Table V.

There is a clear distinction between the systems trained on
West Germanic and Southern Bantu acoustic data. LID using
the transcriptions of Afrikaans and English recognisers per-
forms worst overall, and increasing the order of the language
model does not have a beneficial effect on the error rates and
detection costs. This most likely has to do with the small
sizes of the training sets used to generate the phonotactic
language models for these languages, although the different
phone sets could also be a part of the cause. The results of
every individual Southern Bantu recogniser, as well as their
optimal n-gram orders, are very similar to each other.



TABLE V
LANGUAGE IDENTIFICATION RESULTS USING DIFFERENT PHONEME

RECOGNISERS FOR PRLM

Recognition
Language

Optimal
n-gram
order

ELID Cavg Confusion

afr 3 0.719 0.329 6.72
eng 3 0.716 0.329 6.75

nbl 5 0.645 0.290 5.61
ssw 4 0.648 0.292 5.63
xho 5 0.643 0.294 6.68
zul 5 0.634 0.286 5.46

nso 5 0.667 0.304 6.05
sot 4 0.668 0.300 6.03
tsn 5 0.670 0.307 6.17

tso 4 0.664 0.294 5.83

ven 5 0.671 0.303 6.08

Average 0.610 0.303 6.09

TABLE VI
LANGUAGE IDENTIFICATION RESULTS USING DIFFERENT WORD

RECOGNISERS FOR WRLM

Recognition
Language

Optimal
n-gram
order

ELID Cavg Confusion

afr 2 0.808 0.403 8.62
eng 4 0.798 0.397 8.54

nbl 2 0.739 0.350 7.51
ssw 2 0.744 0.353 7.60
xho 3 0.718 0.338 7.10
zul 2 0.711 0.334 7.11

nso 2 0.741 0.346 7.51
sot 3 0.742 0.349 7.53
tsn 3 0.735 0.348 7.50

tso 2 0.738 0.347 7.36

ven 3 0.743 0.355 7.59

Average 0.747 0.356 7.63

B. WRLM

WRLM results were obtained by using word recognisers
trained on one language at a time. The optimal n-gram order
and the identification results for each language model using
this method are shown in Table VI.

WRLM performs worse than PRLM in all instances. The
effect of the language model on the results is very similar
to that observed in the PRLM results. The language models
trained on the data in Western Germanic languages produce
worse results than those trained on the Southern Bantu lan-
guages, whereas the scores for the Bantu recognisers are very
similar to each other.

Unlike in PRLM, there is no clear relation between optimal
n-gram order and language family. The optimal n-gram order
is mostly lower than in PRLM, as would be expected, since
there are much fewer word tokens. English is an exception to
this, with optimal performance using an n-gram order of 4.

It should be noted, however, that increasing the n-gram order
generally had very little effect on the WRLM identification
scores. Overall, none of the WRLM results are very good.

C. Parallel PRLM

PPRLM results were obtained using the same language
models used for PRLM, but this time optimising over a com-
bination of all the log likelihoods. The LID results of language
model n-gram order optimisation are shown in Table VII.
Optimal results were obtained when all language models used
were the same order. The results do not substantially improve
after n-gram order 5.

The effects of combining the language models is made
clearer by the progression shown in Table VIII. The phoneme
transcriptions of different recognisers are gradually included
(in random order). As the number of languages increases,
the results gradually improve for all evaluation metrics. Any
individual addition is beneficial to the overall result.

A confusion matrix for the 5-gram PPRLM language iden-
tification system is shown in Table IX. A clear trend across
language families is visible, with confusion mostly occur-
ring within the same language families. The West Germanic
languages are in general correctly identified more frequently
than the Southern Bantu languages. Because the Southern

TABLE VII
LANGUAGE IDENTIFICATION RESULTS WITH DIFFERENT ORDER n-GRAMS

USING PPRLM AND PWRLM.

PPRLM PWRLM

Order ELID Cavg Conf. ELID Cavg Conf.

1 0.620 0.275 5.33 0.557 0.252 4.61
2 0.571 0.247 4.46 0.420 0.186 2.95
3 0.503 0.215 3.55 0.417 0.184 2.92
4 0.459 0.195 3.09 0.416 0.184 2.92
5 0.446 0.190 2.96 —

6 0.445 0.190 2.95 —

TABLE VIII
A COMPARISON OF THE RESULTS OF 5-GRAM PPRLM AND 3-GRAM

PWRLM USING AN INCREASING NUMBER OF PARALLEL
TRANSCRIPTIONS.

PPRLM PWRLM

No. of
langs ELID Cavg Conf. ELID Cavg Conf.

1 0.728 0.340 6.96 0.805 0.402 8.64
2 0.674 0.307 5.99 0.757 0.366 7.79
3 0.581 0.252 4.52 0.683 0.319 6.51
4 0.540 0.233 4.02 0.619 0.285 5.44
5 0.522 0.224 3.76 0.577 0.254 4.93
6 0.497 0.212 3.47 0.541 0.243 4.42
7 0.486 0.208 3.40 0.541 0.243 4.42
8 0.476 0.200 3.25 0.492 0.217 3.81
9 0.464 0.197 3.15 0.471 0.207 3.56
10 0.452 0.193 3.05 0.444 0.196 3.24
11 0.446 0.190 2.96 0.417 0.184 2.92



TABLE IX
A CONFUSION MATRIX OF THE OPTIMAL 5-GRAM PPRLM LID SYSTEM.

THE PERCENTAGE OF THE EVALUATION SET CLASSIFIED AS EACH
LANGUAGE IS SHOWN. THE COLUMNS DENOTE THE TEST LANGUAGES

AND THE ROWS THE HYPOTHETICAL LANGUAGES.

afr eng nbl ssw xho zul nso sot tsn tso ven Overall

afr 71.1 18.3 5.4 5.4 4.7 5.7 4.0 5.3 6.9 6.5 4.8 12.6
eng 17.3 66.2 4.9 5.5 6.3 9.3 4.5 7.2 7.4 7.7 5.7 12.9
nbl 0.0 0.2 52.6 4.2 4.5 5.4 1.0 1.5 0.7 2.8 2.7 6.9
ssw 0.3 0.4 5.6 54.3 2.6 3.5 1.2 2.9 1.2 2.5 1.6 6.9
xho 0.3 0.4 3.9 2.5 55.5 5.7 0.7 0.8 0.4 1.3 1.1 6.5
zul 0.9 1.7 7.0 9.0 10.5 52.1 2.4 2.7 3.1 3.8 3.5 8.7
nso 0.8 0.6 3.6 3.1 1.4 1.9 49.8 6.0 11.4 4.4 5.3 8.0
sot 3.8 4.6 4.3 6.9 4.7 6.7 15.0 54.2 16.0 8.3 8.0 12.0
tsn 1.8 1.6 2.2 1.9 3.7 2.7 13.2 10.8 45.9 3.0 4.2 8.3
tso 0.9 1.3 3.3 3.0 2.3 2.4 2.6 3.6 2.6 50.5 5.5 7.1
ven 2.8 4.8 7.5 4.3 3.9 4.6 5.5 5.1 4.5 9.1 57.5 10.0

TABLE X
A CONFUSION MATRIX OF THE OPTIMAL 3-GRAM PWRLM LID SYSTEM.

THE PERCENTAGE OF THE EVALUATION SET CLASSIFIED AS EACH
LANGUAGE IS SHOWN. THE COLUMNS DENOTE THE TEST LANGUAGES

AND THE ROWS THE HYPOTHETICAL LANGUAGES.

afr eng nbl ssw xho zul nso sot tsn tso ven Overall

afr 69.3 22.6 12.1 10.2 11.5 15.0 10.0 11.4 14.0 12.1 9.7 18.0
eng 13.8 63.1 5.6 6.8 8.9 9.1 5.7 8.5 9.9 8.4 5.3 13.2
nbl 0.2 0.2 60.8 2.2 1.0 1.7 1.6 1.3 1.5 1.6 0.8 6.6
ssw 0.6 0.4 2.0 59.2 1.3 3.7 1.8 1.0 0.8 0.9 0.7 6.6
xho 0.7 0.3 1.3 1.6 62.3 2.2 1.3 1.3 0.8 0.7 0.7 6.6
zul 1.7 0.8 1.6 3.4 2.3 51.0 1.3 2.6 1.7 2.8 1.3 6.4
nso 1.3 1.8 1.9 2.3 1.4 2.7 52.4 3.9 5.3 2.5 3.7 7.2
sot 5.8 3.8 3.2 4.4 4.7 4.0 8.9 54.6 9.8 4.4 4.9 9.9
tsn 1.9 2.4 2.1 2.8 1.3 2.3 7.6 5.6 47.9 2.9 4.4 7.4
tso 0.9 1.1 3.0 3.5 2.6 3.6 3.2 2.8 2.0 56.5 4.2 7.6
ven 3.8 3.5 6.4 3.7 2.8 4.7 6.1 7.0 6.4 7.2 64.4 10.6

TABLE XI
THE RESULTS OF 5-GRAM PPRLM AND 3-GRAM PWRLM AS A

FUNCTION OF THE DURATION OF THE TEST UTTERANCE.

Strategy Duration ELID Cavg Confusion

0s-2.5s 0.454 0.204 3.22
PPRLM 2.5s-5.5s 0.423 0.176 2.68

5.5s+ 0.462 0.194 3.86

0s-2.5s 0.440 0.207 2.92
PWRLM 2.5s-5.5s 0.391 0.180 2.76

5.5s+ 0.421 0.181 2.92

Bantu languages are phonetically close to one another, but
distinct from the West Germanic languages, identification of
these is easier. Compared to the West Germanic and the
Nguni language families, the Sotho-Tswana languages exhibit
increased confusion among themselves. Not every language
is selected as often by the identification system, as it has a
moderate bias toward Afrikaans, English and Sesotho.

D. Parallel WRLM

PWRLM results were obtained by combining the log like-
lihoods of all language models used in WRLM, analogous to
the method used in PPRLM. The LID results using PWRLM
with different n-gram order word language models are shown
in Table VII. PWRLM results do not substantially improve
after n-gram order 3.

Although none of the individual WRLM systems perform
better than their PRLM counterparts, the optimal PWRLM
results are better than the optimal PPRLM results. Optimal
PWRLM results are obtained by using 3-grams, but these are
only marginally better than those obtained using 2-grams, with
which the optimal PPRLM system is also outperformed.

The effect of a gradual increase in language models is
shown in Table VIII. Like in PPRLM, each additional language
model improves the overall performance of the system. As the
number of used language models increases, the gap between
the PPRLM and PWRLM results narrows, but the latter does
not start producing better results (in terms of average cost and
confusion) until all language models are considered.

A confusion matrix for the 3-gram PWRLM LID system
is shown in Table X. Compared to the optimal PPRLM
system shown in Table IX, Afrikaans and English are correctly
identified slightly less often, but the system performs better for
all Southern Bantu languages, with the exception of isiZulu.
The amount of confusion within the Sotho-Tswana and Nguni
language families is substantially reduced. However, despite
not performing as well for Afrikaans and English as the opti-
mal PPRLM system, PWRLM results in a much stronger bias
toward these languages. Utterances are classified as Afrikaans
much more often than any of the other individual languages.

E. Utterance duration

The results reported thus far are an average over all utter-
ances in the Lwazi evaluation set. Table XI shows the results
for test utterances depending on the length of the utterances,
for test utterances shorter than 2.5s, between 2.5s and 5.5s,
and longer than 5.5s.

Contrary to our expectations, performance does not improve
with the length of the utterance. The best results are obtained
from the utterances between 2.5s and 5.5s, regardless of the
strategy used. This is likely a result of the structure of the
Lwazi corpus: shorter utterances are likely to be answers to
specific questions, and therefore more formulaic.

V. DISCUSSION

This paper presents a set of baseline language identification
results using the Lwazi data. We used twenty-two single-
language automatic speech recognisers trained on the different
languages in the Lwazi corpus to obtain sets of phoneme and
word transcriptions for each of the languages. To obtain LID
results, we trained phoneme and word language models on
these transcriptions using various orders of n-gram.

We show results for four different LID strategies. PRLM
uses language models trained on the phoneme transcriptions
of each of the Lwazi languages, and selects the most likely
language by comparing the language model log likelihood.



WRLM uses word transcriptions for the same task. PPRLM
runs eleven phoneme recognisers in parallel, and determines
a global optimum based on a combination of the phoneme
language models trained on their results. PWRLM does the
same, but uses word language models trained on the word
transcriptions.

Although PRLM obtained better results for identification
than WRLM, the optimal PWRLM outperformed the optimal
PPRLM system. The best results were obtained using PWRLM
with 3-gram language models, resulting in a language iden-
tification error rate of 0.418, a decision cost of 0.184, and
a confusion of 2.92. This is not exceptionally good, but it
should be borne in mind that the Lwazi corpus is small in
size, and that the utterances were just 5 seconds long on
average. To improve future results using the Lwazi corpus,
GMM-based LID could be considered as an alternative, since
this strategy has been shown to perform better than PPRLM
on short utterances [2]. However, since no prior results for
South African language identification have been reported,
these results can be considered a new benchmark.
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