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Abstract—This paper presents baseline speech recognition
results using the Lwazi and AST corpora. Phoneme and word
recognition are performed in all eleven South African languages.
For four languages, the AST and Lwazi data were merged
together to create more elaborate acoustic models. Phoneme
recognition results were found to be similar to previously
published figures. Word recognition results were similar across
all languages, and relatively poor due to small language model
training set sizes. The addition of AST data was shown to lead
to limited improvements in both phoneme and word error rates.

I. INTRODUCTION

Telephone-based language technology can be used as an
aid in building up a technological infrastructure in developing
countries, where other information sources are often scarce.
Until very recently, almost no South African data was available
for the development of automatic speech recognition (ASR)
and associated systems. The Lwazi corpus was developed
to change this [1], [2]. Prior to the Lwazi corpus, the AST
corpora were developed for the same goal, although they are
comprised of just five South African languages [3], [4].

This paper aims to further explore the possibilities of
both phoneme and word recognition for all South African
languages. The Lwazi corpus has been used for phoneme
recognition before, but its potential for word recognition
has only been investigated in a small-vocabulary task [2].
Although Lwazi and AST are similar in goal and scope, the
possibility of combining the two corpora to achieve better ASR
results has never been investigated. We present a set of baseline
speech recognition experiments based on the Lwazi corpus,
and similar experiments based on a merged corpus composed
of both Lwazi and AST data.

II. THE LWAZI CORPUS

The Lwazi ASR corpus was developed between 2006 and
2009, as part of a government project which aimed to demon-
strate the benefits of speech technology in South Africa. The
corpus was compiled to investigate the feasibility of speaker-
independent speech recognition using limited resources, and
was shown to achieve adequate performance in phoneme
recognition and small vocabulary word-recognition tasks [2].
The corpus consists of speech data for each of the 11 official
South African languages, annotated orthographically. It is ac-
companied by baseline dictionaries obtained by expanding the

TABLE I
PHONE SETS AND VOCABULARY SIZES FOR THE ELEVEN LWAZI DATASETS

(EXCLUDING SILENCE AND NOISE MARKERS).

Code Language Language
Family

Phone
types

Word
types

afr Afrikaans West
Germanic 37 1,585

eng SA
English

West
Germanic 44 2,112

nbl isiNdebele Nguni 47 4,751
ssw siSwati Nguni 41 5,092
xho isiXhosa Nguni 50 4,727
zul isiZulu Nguni 45 5,376

nso Sepedi Sotho-
Tswana 30 3,276

sot Sesotho Sotho-
Tswana 29 2,568

tsn Setswana Sotho-
Tswana 34 2,980

tso Xitsonga Tswa-
Ronga 52 2,747

ven Tshivenda Venda 40 2,441

Overall 110 31,757

original Lwazi dictionaries [5] using grapheme-to-phoneme
prediction [6]. The Lwazi corpus is freely available under an
open content license [7].

For each language, 200 first language speakers were
recorded over a telephone channel, each providing approxi-
mately 30 utterances. The utterances include phrases randomly
selected from phonetically balanced corpora developed specif-
ically for this task, as well as short words and phrases, such
as the answers to open and yes/no questions, spelt words,
dates, and numbers [2]. The orthographic annotations include
markers for speaker and background noise, as well as for
partial words. The number of words and phones in the various
data sets are shown in Table I. Aside from the types in this
table, each of the languages included one phone and one word
marker to denote silence, one phone and one word marker to
denote speaker noise, and one word marker to denote fillers.



TABLE II
DESCRIPTION OF THE LWAZI TRAINING SETS.

Lang.
No. of
phone
tokens

No. of
word

tokens

No. of
speakers

No. of
utts

Dur.
(mins)

afr 98,427 24,754 140 4,186 179
eng 112,388 28,302 136 4,048 207

nbl 193,987 29,229 140 4,216 432
ssw 180,143 27,456 136 4,050 442
xho 166,502 27,711 150 4,474 406
zul 151,270 24,363 139 4,018 360

nso 151,680 38,682 130 3,854 385
sot 136,536 34,007 142 4,223 300
tsn 131,737 35,694 143 4,199 339

tso 146,736 35,615 154 4,624 378

ven 119,140 28,817 138 4,142 305

Total 1,588,546 334,630 1,548 46,034 3,733

TABLE III
DESCRIPTION OF THE LWAZI DEVELOPMENT SETS.

Lang.
No. of
phone
tokens

No. of
word

tokens

No. of
speakers

No. of
utts

Dur.
(mins)

afr 14,080 3,574 20 598 26
eng 16,757 4,224 20 598 31

nbl 27,327 4,097 20 603 62
ssw 26,477 4,035 20 593 64
xho 21,162 3,521 20 586 51
zul 22,603 3,597 20 582 53

nso 23,379 5,948 20 596 58
sot 20,082 5,003 20 605 44
tsn 17,739 4,799 20 574 43

tso 19,032 4,607 20 601 51

ven 17,383 4,143 20 596 42

Total 226,021 47,548 220 6,532 525

A. Training and test sets

In order to develop speech recognition systems, the data
for each language was split into training, development and
evaluation sets. The evaluation sets employed in this work
coincide with the fixed evaluation subsets for the Lwazi
corpus, which were obtained by the selection of 20 male
and 20 female speakers per language [6]. The development
sets consisted of a further 20 randomly chosen speakers. The
number of phone and word types and tokens in each of these
sets is shown in Tables II, III, and IV.

B. Removing phonetically rich utterances

The Lwazi corpus includes a large number of phonetically
rich utterances. Many of those are repeated up to 15 times
throughout the training and test sets. To avoid positive bias in
our recognition results, all utterances which occurred in both
the training and test sets were removed from the training set
for language modelling purposes. Since the prompts for the

TABLE IV
DESCRIPTION OF THE LWAZI EVALUATION SETS.

Lang.
No. of
phone
tokens

No. of
word

tokens

No. of
speakers

No. of
utts

Dur.
(mins)

afr 28,724 7,165 40 1,199 51
eng 33,061 8,373 40 1,197 63

nbl 54,428 8,185 40 1,194 121
ssw 53,154 8,010 40 1,195 128
xho 45,275 7,408 40 1,182 105
zul 46,682 7,568 40 1,185 115

nso 47,657 1,1893 40 1,190 127
sot 38,280 9,628 40 1,199 85
tsn 36,993 9,891 40 1,197 94

tso 37,560 9,067 40 1,201 92

ven 34,140 8,143 40 1,201 87

Total 455,954 95,331 440 13,140 1,068

TABLE V
WORDS AND PHONES IN THE LANGUAGE MODEL TRAINING SETS, AFTER
REMOVAL OF UTERRANCES OVERLAPPING WITH THE DEVELOPMENT OR

EVALUATION SETS.

Lang.
No. of
phone
tokens

No. of
word

tokens

% word
tokens

remain-
ing

No of
word
types

% eval
words
not in

reduced
train set

afr 16,575 4,735 19.1% 486 76.6%
eng 17,989 5,279 18.7% 604 74.2%

nbl 59,118 9,882 33.8% 2,124 61.4%
ssw 52,572 8,921 32.5% 2,324 60.8%
xho 69,063 12,136 43.8% 3,097 42.6%
zul 67,166 11,399 46.8% 3,050 51.6%

nso 39,039 9,808 25.4% 1,483 57.2%
sot 39,788 10,224 30.1% 1,309 52.8%
tsn 44,769 12,229 34.3% 1,629 48.8%

tso 40,693 10,110 28.4% 1,292 56.9%

ven 33,551 8,046 27.9% 1,193 56.5%

Total 480,323 102769 30.7% 26,221

Lwazi utterances are not publically available, such recurrences
were detected by exhaustive pairwise string alignment between
the training and test set transcriptions. All training utterances
which were at least six words long and resulted in a match
accuracy of at least 60% with any of the test sentences were
removed. Training utterances which were less than six words
long were removed only when they were identical to test
utterances, since a match of three words did not necessarily
imply a phonetically rich utterance in these cases.

This procedure significantly reduced the size of the training
set available for language modelling, as shown in Table V. The
extent of its impact varies between the languages. The largest
overlap between test and training utterances was detected for
Afrikaans and English. Since these languages already had the
smallest training sets in terms of phone tokens, the resulting



differences in the language model training sets are large. The
contrast is stark in comparison with the Nguni languages,
which had the largest training sets, but suffered the smallest
reductions after removal of overlapping utterances. These
smaller training sets were used only to train language models;
acoustic model training continued to use the full training set.
There is a possibility that this will have an effect on the
reported error rates, but the degree of overlap is too large for
acoustic modelling to be viable on the reduced training set.

Aside from simply reducing the amount of data available to
train the language models, many words which occurred in the
full training set are no longer present in the reduced set at all.
The scale at which the vocabulary is reduced ranges between
55 and 80% depending on the language, as shown in Table V.
In the cases where many words are removed, this would lead
to many out-of-vocabulary words during recognition. To avoid
word recognition results being dominated by OOV errors, the
language models used closed vocabularies.

III. ACOUSTIC MODELS

A set of HMM acoustic monophone models was trained
for each of the 11 languages using the full training sets.
Embedded Baum-Welsh re-estimation was used to obtain
speaker-independent diagonal-covariance monophone models
with three states per model and one Gaussian mixture per state.
Each speech frame was parameterised as a 39-dimensional fea-
ture vector consisting of 12 Mel-frequency ceptral coefficients
(MFCCs) and their first and second differentials. The models
were normalised using cepstral mean normalization.

Model development proceeded from a flat start using the
first pronunciation of each training word found in the dictio-
nary. Once a first set of acoustic models had been obtained,
the training set was re-aligned using a Viterbi word recogniser
to allow pronunciation variants to be accounted for. Such re-
alignment followed by re-training was performed 8 times, after
which the phone-level training transcriptions and monophone
recognition results on the development set were seen to
stabilise.

Cross-word triphone models were obtained by decision tree
state clustering [8]. The AST decision tree questions were
used for this purpose [3]. The noise and silence models were
used as context phonemes, but were not expanded to triphones
themselves. The results of state clustering on the acoustic
models is summarised in Table VI, which shows the number of
possible triphones in each language, the number of observed
triphones in the training set, and the number of distinct states
remaining after clustering.

The triphone models were then improved by gradually in-
creasing the number of Gaussian mixtures. After each increase,
four iterations of embedded re-estimation were performed. The
reported results are for models with 8 mixtures per state, which
were found to be optimal on the development set.

For speech recognition, the HTK hidden Markov model
(HMM) based speech recogniser was used to perform a time-
synchronous beam search using the Token-Passing proce-
dure [9]. Optimal values for the word insertion penalty and

TABLE VI
DESCRIPTION OF TRIPHONE ACOUSTIC MODELS AFTER DECISION-TREE

STATE-CLUSTERING

Language No. possible
triphones

No. distinct
triphones

No. clustered
states

afr 56,279 5,276 908
eng 93,106 7,447 1,013

nbl 12,849 5,371 1,419
ssw 75,811 5,597 1,090
xho 135,202 5,830 979
zul 99,407 5,980 1,397

nso 30,722 4,395 1,049
sot 27,871 3,812 1,285
tsn 44,066 4,827 1,117

tso 151,634 5,583 1,376

ven 70,562 4,669 1,190

language model scaling factor were determined by optimising
the results for Afrikaans, Sesotho and isiZulu on the develop-
ment sets, as representatives of the major language families.
Each of these languages was shown to have the same optimal
parameters. This optimization was performed for phoneme
and word recognition independently. For the word insertion
penalty, the optimum was −10. For the language model scaling
factor, the optimal values were 6 and 10 for phoneme and word
recognition respectively.

IV. LANGUAGE MODELS

Unigram language models were obtained using phone and
word transcriptions of the reduced training set for each
language (see Section II-B). Backoff bigram language mod-
els [10] were obtained using the same training sets, with the
language model probabilities calculated using an absolute dis-
count of 1.0 [11]. Language model perplexities were calculated
on the evaluation sets for both unigram and bigram models.
Perplexity can be considered an indication of the difficulty of
predicting the next phoneme or word in a sequence.

A. Phoneme language models

The unigram phoneme language models give an indication
of the diversity of the phone sets of the different languages.
Evaluation set perplexities for phoneme unigram and bigram
models are shown in Table VII. There are consistently 4
more unigrams than there are phonemes in the lexicon, since
sentence boundary markers, noise, and silence are included.

The West Germanic languages, Afrikaans and English,
show a higher bigram perplexity than the Southern Bantu
languages. This implies that phoneme sequences in Southern
Bantu languages are more predictable. A likely explanation for
this is that Bantu languages conventionally use open syllables,
making their phoneme sequences more predictable than those
in Afrikaans and English. The bigram phoneme perplexities
are somewhat higher than those observed in earlier analysis
of the Lwazi corpus [2], which is likely due to the different
language model training sets used.



TABLE VII
PHONEME UNIGRAM AND BIGRAM LANGUAGE MODELS AND THEIR

EVALUATION SET PERPLEXITIES.

Language No. of
unigrams

Unigram
perplexity

(eval)

No. of
bigrams

Bigram
perplexity

(eval)

afr 41 28.67 654 21.55
eng 48 34.92 961 24.15

nbl 51 22.99 698 12.29
ssw 45 22.66 733 12.20
xho 54 24.08 846 12.00
zul 49 24.27 772 12.42

nso 34 20.42 544 10.92
sot 33 20.62 519 10.69
tsn 38 21.48 645 11.95

tso 56 25.35 772 12.33

ven 44 23.36 609 12.30

TABLE VIII
WORD UNIGRAM AND BIGRAM LANGUAGE MODELS AND THEIR

EVALUATION SET PERPLEXITIES.

Language No. of
unigrams

Unigram
perplexity

(eval)

No. of
bigrams

Bigram
perplexity

(eval)

afr 1,589 509.31 1,086 491.11
eng 2,116 590.34 1,311 525.96

nbl 4,755 1,234.27 2,515 791.14
ssw 5,096 1,005.18 2,403 689.44
xho 4,731 1,067.72 3,493 499.85
zul 5,380 1,058.82 3,258 634.02

nso 3,280 366.96 2,915 256.31
sot 2,572 304.83 2,688 177.16
tsn 2,984 347.36 3,543 211.74

tso 2,751 386.50 2,677 238.18

ven 2,445 451.46 2,422 327.46

B. Word language models

The perplexities of the word unigram and bigram models
are shown in Table VIII. The unigram perplexities are highest
for the closely related Nguni languages (isiZulu, isiXhosa,
isiNdebele and Siswati), despite the large size of their language
model training sets. The larger vocabulary size is very likely
the reason for these higher perplexities. Afrikaans and English
also show high unigram perplexities, but this is most likely due
to the smaller size of their training sets.

These trends continue in the bigram perplexities, but not as
strongly. The perplexities of the Afrikaans and English word
language models do not decrease much, which would support
the notion that the high perplexities are due to their small
training set. The Nguni language perplexities decrease much
more, especially isiXhosa, which is now average compared to
the other languages. The other languages have their language
model perplexities reduced by varying degrees.

TABLE IX
PHONEME RECOGNITION ERROR RATES FOR EACH LANGUAGE. THE

CURRENT RECOGNITION RESULTS ARE COMPARED TO THE PRIOR LWAZI
RESULTS IN [2]

Language Unigram PER Bigram PER 2009 PER

afr 45.06 43.29 36.86
eng 52.66 50.54 45.74

nbl 38.17 35.04 34.59
ssw 36.92 34.06 35.54
xho 38.75 34.70 42.76
zul 44.38 41.47 39.05

nso 36.33 33.47 44.81
sot 38.54 34.86 45.21
tsn 39.70 36.88 43.81

tso 39.06 34.64 40.59

ven 37.10 34.00 33.22

Average 40.61 37.54 40.20

V. RESULTS USING LWAZI

Since the Lwazi corpus includes only orthographic tran-
scriptions, phonetic transcriptions were generated using it-
erative re-alignment with the dictionary. Hence, the most
appropriate measure of performance for the acoustic models
is the error rate of a word-based speech recognition system.
However, in the context of low-resource languages, word
recognition has limited diagnostic value, due to the small and
constrained nature of the acoustic and language model training
corpora. Hence, the results for both phoneme recognition and
word recognition are reported. It should be borne in mind,
however, that the former are not based on manual phonetic
transcripts.

A. Phoneme recognition

Phoneme recognition error rates are shown in Table IX. In
all cases, bigram language models give better results than uni-
gram models, as would be expected. However, the difference is
not particularly large for the West Germanic languages, which
had phoneme language models with higher bigram perplexities
and smaller language model training sets.

The Germanic phoneme recognisers exhibit higher error
rates, corresponding to the higher perplexities of their lan-
guage models. The remaining languages show similar per-
formance, although isiZulu fares noticably worse than other
South African languages, despite its relatively low perplexity
and comparatively large training set. This is unexpected,
considering the close similarity of isiZulu and isiXhosa, which
would lead one to expect comparable results.

Prior research on phoneme recognition using the Lwazi
corpus is available [2]. Compared to our current results,
this 2009 system performs notably better on Afrikaans and
English. This may be due to differences in the language
model training sets (see Section II-A). The current Southern
Bantu recognisers generally have similar or better results than
their 2009 counterparts, with the exception of isiZulu, which



TABLE X
WORD RECOGNITION ERROR RATES FOR EACH LANGUAGE.

Language Unigram WER Bigram WER

afr 53.52 52.52
eng 60.85 58.88

nbl 48.48 48.15
ssw 53.72 53.60
xho 58.77 55.02
zul 65.25 62.99

nso 61.09 57.47
sot 59.47 52.71
tsn 60.42 55.32

tso 56.24 50.74

ven 58.81 56.70

Average 57.87 54.92

performs slightly worse. On average, the phoneme recognition
error rates reported here are comparable to those in [2].

A comparison with the phoneme error rates obtained for the
similar AST corpora [3] is difficult due to the different phone
sets employed. Section VI will consider this further.

B. Word recognition

Word recognition error rates are shown in Table X. Since
removing repeated phrases from the training sets greatly
reduced their sizes, word recognition error rates are high,
as would be expected due to their high perplexities. Using
bigram language models is better in all languages, although
the improvements over unigram results are inconsistent.

IsiZulu, which has the highest word language model per-
plexity, has the highest error rates. Curiously, its close sister
isiXhosa fares noticeably better. Afrikaans performs better
than average, despite its larger perplexity and the smaller size
of its training set. We note that there are no clear trends based
on language family, as were observed in phoneme recognition.
On average, however, the error rates are similar across all
languages.

Recognition performance may improve if a cross-validation
framework was employed to preserve language model training
data while also avoiding the test/train overlap. There are no
prior benchmarks available on word recognition using the
Lwazi or AST corpora.

VI. MERGING LWAZI AND AST
For five South African languages, namely isiZulu, isiXhosa,

Afrikaans, English, and Sesotho, corpora are also available in
the previously developed AST databases [4]. These corpora
contain more data for these languages than their respective
counterparts in the Lwazi corpus. Considering the minimal
size of the Lwazi corpus, this additional data should provide a
means to improve results. English Lwazi and AST data have
previously been successfully combined to improve acoustic
models for a call routing system [12]. This lead us to believe
merging AST training data with that of their Lwazi counterpart
could be beneficial to recognition results.

TABLE XI
DESCRIPTION OF THE TRAINING SET OBTAINED BY MERGING THE AST

AND LWAZI TRAINING SETS.

Language

No. of
AST

phone
types

No. of
merged
phone
types

No. of
merged
word

tokens

No. of
merged
phone
tokens

Merged
dur.

(mins)

afr 81 37 72,137 268,872 550
eng 50 44 76,240 280,619 566

xho 101 50 64,381 343,851 825
zul 94 45 72,894 433,847 1,012

Overall 125 82 285,652 1,327,189 2,955

TABLE XII
PHONEME AND WORD RECOGNITION ERROR RATES FOR SYSTEMS WITH

MERGED AST AND LWAZI DATA.

Language Unigram
PER

Bigram
PER

Unigram
WER

Bigram
PER

afr 43.30 41.80 52.25 51.40
eng 52.12 49.67 59.32 57.98

xho 37.94 33.48 54.39 50.23
zul 44.48 41.37 67.93 65.70

Average 16.17 15.12 21.26 20.48

Table XI describes the effects of merging the Lwazi and
AST corpora for four different AST languages. The two
corpora have different annotation styles, and different phone
sets are used for the same language. In order to merge training
data, the AST phonemes were mapped to their closest Lwazi
counterparts, which significantly reduced the size of the phone
set for Afrikaans, isiXhosa and isiZulu. The Lwazi dictionaries
were extended with entries from the AST dictionaries for
words which did not occur in the Lwazi corpus. The resulting
training sets are two to three times larger than the Lwazi
training sets in terms of phone and word tokens and duration.

A. Results using Lwazi and AST

A new set of acoustic models was trained on the resulting
extended training sets and dictionaries, using the methods
described in Section III. Phoneme and word recognition were
performed using the same language models and parameters
used in Section V. The results for these experiments are shown
in Table XII.

Adding the AST data proved to be slightly beneficial for
phoneme recognition, with improvements for all four lan-
guages regardless of the type of language model. However, the
improvements were small despite the large increase in training
set size. This could be ascribed to either differences in acoustic
conditions, to the difference in annotation style between the
two corpora, or to a combination of both. Furthermore, the
language models are still trained on very small amounts of
Lwazi data.

For word recognition, the results are mixed. While perfor-
mance is slightly better for Afrikaans, English, and isiXhosa,
the results are worse for isiZulu. Again, we ascribe this to the



differing transcription styles of the corpora.
We did attempt to supplement the Lwazi language model

training data with AST data. This did not lead to improved
results, however.

VII. CONCLUSION

We have presented a set of baseline phoneme and word
speech recognition results for the Lwazi corpus. We have also
presented results for a system combining Lwazi with AST
data. The results for phoneme recognition obtained using only
the Lwazi data are similar to those reported earlier by other
researchers, although our language model training sets were
much smaller. The word recognition results are poor, although
it should be borne in mind that in this case, the language model
training sets were especially limited and that there is no prior
benchmark using Lwazi data to perform this task. To improve
results in the future, more language model training data would
be beneficial.

Merging the AST and Lwazi data proved beneficial for
phoneme recognition, but less so for word recognition. Differ-
ences in annotation style between AST and Lwazi necessitated
the mapping of the larger AST onto the smaller Lwazi phone
set for acoustic model training. To better merge the two
corpora it would be advantageous to obtain a pronunciation
dictionary using a single uniform style for all languages.
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