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ABSTRACT
We consider the problem of detecting, isolating and classifying 
elephant calls in continuously recorded audio. Such automatic call 
characterisation can assist conservation efforts and inform environ
mental management strategies. In contrast to previous work, in 
which call detection was performed for audio signals several sec
onds in length, we perform call activity detection at discrete time 
instants, which implicitly allows call endpointing. For experimenta
tion, we employ two annotated datasets, one containing Asian and 
the other African elephant vocalisations. We evaluate several shal
low and deep classifier models, and show that the current best 
performance can be improved by using an audio spectrogram 
transformer (AST). Furthermore, we show that transfer learning 
leads to improvements both in terms of computational complexity 
and performance. Finally, we consider automated sub-call classifi
cation using an accepted vocalisation taxonomy, a task which has 
not previously been considered, and for which the transformer 
architectures again provide the best performance. Our best classi
fiers achieve an average precision (AP) of 0.962 for binary call 
activity detection, and an area under the receiver operating char
acteristic (AUC) of 0.957 and 0.979 for call classification (5 classes) 
and sub-call classification (7 classes), respectively. These represent 
new benchmarks or improvements on previously best systems.
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1. Introduction

The African bush elephant (Loxodonta africana) and African forest elephant (L. cyclotis) 
have been identified as endangered and critically endangered species, respectively 
(Gobush, Edwards, Balfour, et al. 2020; Gobush, Edwards, Maisels, et al. 2020). The 
rapid decline in their population is primarily due to habitat loss and to poaching.

The African bush elephant is found predominantly in the open savanna, grassland and 
shrubland of sub-Saharan Africa, where they rely on vast territories to roam and forage 
for food. In contrast, the forest elephant inhabits the rainforests of Central and West 
Africa.
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The Asian elephant (Elephas maximus) has also been identified as endangered by the 
IUCN. While this species is also hunted for its ivory, it faces the particular challenge of 
human-elephant conflict (Williams et al. 2020). The Asian elephant is found primarily in 
the dry forest and grassland of Southeast Asia, where it shares its habitat with rapidly 
growing human settlements. As these settlements expand, the natural habitat is increas
ingly fragmented and reduced. This has lead to increased competition for resources, with 
ensuing conflict between human and elephant.

The detection and classification of elephant vocalisations can provide important 
insights into the behaviour, distribution, and conservation status of these animals 
(Zeppelzauer and Stöger 2015; Keen et al. 2017). Automated behavioural classification 
can support passive monitoring and ecological management of wildlife in reserves and 
sanctuaries. This high-level information can be useful for bioacoustic and ecology 
research alike, as well as acting as an early warning system for threats, such as poaching. 
Furthermore, automated classification and endpointing are useful to downstream tasks 
such as passive sound source localisation (Geldenhuys 2023).

1.1. Contributions

In this study, we propose an automated system for the classification, detection and 
endpointing of elephant calls using deep learning architectures. We include 
a transformer-encoder architecture, which utilises a learnable embedding token to 
distinguish between different call types and has, to our knowledge, not been used to 
process elephant vocalisations before. Furthermore, we propose a novel transformer 
configuration that allows for improved endpointing performance. To develop our mod
els, we make use of two corpora containing labelled recordings of both African and Asian 
elephant rumbles. We believe that this is the first work to use both out-of-domain and in- 
domain transfer learning to detect and classify elephant calls and the first to perform 
explicit call endpointing. Finally, we also perform explicit subcall classification, as a first 
step towards automated elephant behavioural classification.

2. Elephant vocalisations

African elephants have a complex vocal repertoire, consisting of various call types that 
serve different communicative functions and appear in different behavioural contexts. 
These calls can be divided into two main categories: laryngeal calls, which originate in the 
larynx, and trunk calls, which are produced by a blast of air through the trunk (Poole 
et al. 1988, 2005; Langbauer 2000; Poole 2011). These call types can be further distin
guished based on their acoustic measurements, such as duration, minimum frequency, 
and spectral characteristics (Poole et al. 2005; Poole 2011). By examining how elephants 
use these calls in different behavioural contexts, we can gain insights into the complex 
dynamics of their social organisation and communication.

Laryngeal calls include rumbles, roars, grunts, cries, and idiosyncratic calls such as 
croaks and truck-like calls. Rumbles are low-frequency vocalisations that can travel long 
distances and are used in a variety of contexts, including greeting, reuniting, and 
reassurance. They can also convey information about the caller’s identity, age, and 
reproductive status (Soltis 2010). Roars are loud, high-frequency calls that serve to 
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intimidate or warn other animals, while grunts are soft, low-frequency vocalisations used 
in close-range communication. Cries are high-pitched, urgent calls produced in response 
to separation or danger (Poole et al. 1988). The husky cry is a variant of the cry with 
a rougher, more strained quality. Croaks and truck-like calls are structurally unique calls 
that may not be socially relevant, with limited exemplars having been observed (Poole  
2011).

Trunk calls include trumpets, bursts, snorts, and chirps. Trumpets are loud, high- 
frequency vocalisations produced by exhaling through the trunk, often used in greet
ing, excitement, or as a contact call (Poole and Granli 2011). Bursts are short, 
explosive calls produced by rapidly expelling air through the trunk, while snorts are 
similar but less intense. Chirps are high-frequency, bird-like calls produced by 
vibrating the tip of the trunk (Soltis 2010). The nasal trumpet is a variation of the 
trumpet call produced through the nose instead of the mouth, resulting in a softer, 
more muffled sound (Poole 2011).

3. Classification models

We will compare the performance of various classifier architectures when applied to the 
task of elephant call classification, detection and endpointing. In the following sections, 
we introduce these techniques.

3.1. Shallow classification models

In addition to current neural network classifiers, three shallow architectures were 
considered as baselines. These are described briefly in the following: logistic regression 
(LR), support vector machines (SVMs) and gradient boosting trees (specifically 
XGBoost).

3.1.1. Logistic regression
Logistic regression (LR) is a well-established linear approach to binary classification 
problems. The model estimates the log odds of an event’s occurrence as a linear combi
nation of the input features. The sigmoid function is then applied to the log odds in order 
to obtain a probabilistic output, used for classification. The posterior class probabilities 
are optimised through maximum likelihood estimation of the model parameters. Logistic 
regression (LR) is popular due to its simplicity, interpretability, and strong performance 
when the independent variables are linearly related to the log odds of the dependent 
variable.

3.1.2. Support vector machines
Support vector machines (SVMs) aim to find a hyperplane decision boundary that best 
separates data points of different classes (Cortes and Vapnik 1995). This hyperplane is 
typically chosen as the one with the largest margin, which is the distance between the 
hyperplane and the closest data points from each class, also known as the support vectors. 
SVMs use different kernel function transformations to transform data from a space in 
which they might not be linearly separable into a different space in which they are. 
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Commonly used kernel functions include linear, polynomial, radial basis function, and 
sigmoid kernels.

3.1.3. Gradient boosting trees
Decision trees recursively partition data into subsets based on feature values, 
leading to a tree-like structure. At each internal node of the tree, a test on an 
attribute is performed, and branches lead away based on the outcome of this 
binary test (i.e. true or false). The leaf nodes of the tree represent class labels in 
classification tasks. Decision trees can suffer from overfitting due to their ten
dency to create complex decision structures that memorise training samples rather 
than generalise patterns within the dataset (Quinlan 1986; Breiman 2001). To 
address this, various pruning strategies and tree ensemble methods have been 
proposed, such as reduced error pruning, cost complexity pruning, and random 
forests.

Random forests (Breiman 2001) are an ensemble learning method. A random forest 
consists of multiple decision trees trained on different sub-samples of the original 
dataset. Each of the trees uses a random subset of features to split nodes. The final 
classification is made by averaging the classification scores of all individual trees in the 
forest.

Gradient Boosting represent a popular ensemble technique that combines multiple 
weak performing models (e.g. decision trees) to build an overall model that preforms 
better than the individual weak component models. The primary goal is to improve the 
ensemble model estimation through sequential learning based on the weaknesses of 
previous models. XGBoost (XGB) (Chen and Guestrin 2016) uses a tree-based algorithm 
that focuses on minimising the objective function by iteratively fitting trees to the 
residual errors from the previous step.

3.2. Deep neural classification models

The shallow classifiers described above are well established and have already seen 
application in the field of elephant call detection (Clemins and Johnson 2003; 
Zeppelzauer and Stöger 2015; Silva 2017). Recently, neural architectures have come to 
represent the state-of-the-art in many machine learning applications. The following 
section describes three deep learning architectures, namely multi-layer perceptrons 
(MLPs), convolutional neural networks (CNNs) and transformer-based (encoder-only) 
and transformer-based (encoder-only) architectures. Furthermore, it describes the con
cepts of transfer learning and self-supervised learning through self-distillation.

3.2.1. Multi-layer perceptron
Multi-layer perceptrons (MLPs) (Rumelhart et al. 1986) are feedforward neural net
works, consisting of multiple layers of neurons that process input data through a series of 
hidden layers to produce a final model estimate. Each neuron is fully connected to all 
neurons of the preceding layer and includes a non-linear activation function. Similar to 
LR models, MLPs are trained by maximising the posterior class probability.
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3.2.2. Convolutional neural network
Convolutional neural networks (CNNs) (Fukushima 1980; LeCun et al. 1989 are a class of 
deep learning models traditionally applied in the field of computer vision and image 
processing. Originally inspired by the biological structure of the visual cortex, CNNs 
were designed to mimic human vision. The CNN architecture includes convolutional 
layers, pooling layers, and fully connected layers. Convolutional layers use small kernel 
filters to extract local features from the input, pooling layers downsample the feature 
maps to reduce dimensionality and computational cost, and fully connected layers enable 
the network to model complex decision boundaries. Over the last two decades, significant 
advances have been made in CNN architecture, such as AlexNet (Krizhevsky et al. 2012), 
VGGnet (Liu and Deng 2015), and residual neural networks (ResNets) (He et al. 2016). 
The latter employs skip connections between layers that allow deeper models to be more 
effectively trained.

3.2.3. Transfer learning
Transfer learning aims to improve model performance on a target domain by transferring 
knowledge contained in a different source domain (out-of-domain pre-training) or 
similar source domain (in-domain pre-training) (Pan and Yang 2009). Transfer learning 
has proven to be especially useful in low-resource or data sparse settings (Zhuang et al.  
2020), as deep neural architectures typically require large quantities of data. Following 
pre-training, the model can be fine-tuned on the domain-specific data.

3.2.4. Transformers
The transformer architecture was first proposed by (Vaswani et al. 2017) as a successor to 
RNN for sequence-to-sequence natural language processing (NLP) tasks. Transformers 
have an encoder-decoder structure that relies on the attention mechanism to model both 
long- and short-term sequence dependencies. The architecture benefits from reduced 
training times, due to the consistent number of operations, compared to the recurrent 
networks that perform a variable number of operations, dependant on the input sequence 
length. As a result, the transformer architecture can be parallelised during training, while 
RNNs have to be trained sequentially. Furthermore, the global attention mechanism 
allows transformers to benefit from a constant dependence on path-length, which allows 
improved long-term and short-term dependency modelling. However, this comes at the 
cost of a memory requirement that is quadratic with sequence length.

3.2.5. Vision transformers
The standard transformer architecture, as proposed by Vaswani et al. (2017), was 
intended for machine translation and has since become the dominant method in NLP. 
A naïve application of the self-attention mechanism to images would require that 
each pixel attends to every other pixel. However, the quadratic memory requirement 
of the global attention mechanism, in terms of input sequence length, would make 
this practically infeasible for images. Thus, to apply transformers (encoder only) in 
the context of image processing, several modifications to the global attention mechan
ism have been suggested (Hu et al. 2018; Parmar et al. 2019; Zhao et al. 2020). 
Dosovitskiy et al. (2020) propose that a single two-dimensional image is divided into 
a sequence of smaller images, known as patches. A trainable linear projection is used 
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to reduce the dimensionality of each patch into a fixed size latent vector, known as 
a patch embedding. The process of obtaining a patch embedding is similar to the 
textual embedding process commonly employed in traditional NLP tasks. Similar to 
standard transformers, a positional embedding or encoding scheme (Vaswani et al.  
2017) is applied to each patch embedding. This positional encoding remains one- 
dimensional, as two-dimensional encoding schemes have not proven more effective 
(Dosovitskiy et al. 2020). An optional learnable embedding token [CLS], can be 
appended to the start of the patch embedding sequence, the output of which serves 
as the model classification estimate (Devlin et al. 2019). The vision transformer (ViT) 
architecture allows image classification to make effective use of the self-attention 
mechanism, employed by the transformer-encoder architecture.

3.2.6. Audio spectrogram transformer
Gong et al. (2021) proposes the audio spectrogram transformer (AST) architecture, 
which performs audio classification by applying a ViT to a two-dimensional time- 
frequency spectral representation (mel-spectrogram) of an input audio sequence. 
Applying deep neural vision classification models to audio classification was first pro
posed by Hershey et al. (2017). Here, the authors applied a CNN architecture typically 
used for image classification to a two-dimensional representation of an input audio 
sequence.

The AST architecture first converts the input audio waveform into a 128-dimensional 
log-mel spectrogram representation, computed using a 25 ms hamming window with 
a stride of 10 ms (a typical configuration for speech recognition tasks). Each cell in this 
2D input matrix can be understood to represent the confidence of a given frequency’s 
presence within the signal at a particular time. The ViT architecture subdivides this 
matrix into several disjoint ‘submatrices’ (referred to as patches) each consisting of 
16� 16 cells and flattened into a single 256-dimensional vector. These patches are passed 
through a ViT model, with 768 embedding dimensions, 12 transformer encoding layers 
each with 12 self-attention heads (Gong et al. 2021). As in the ViT architecture, 
a learnable embedding token [CLS] is prepended to the start of the patch embedding 
sequence, the output of which is used to perform sequence classification.

3.2.7. Self-supervised pre-training
Annotating and labelling datasets is expensive because it typically requires human 
expertise. This makes techniques that do not depend on target labels attractive. Self- 
supervised learning is an approach where the target labels are either generated by the 
source data or using another algorithmic system. Self-supervised learning allows super
vised training methods to be used on data previously only accessible to unsupervised 
techniques. Commonly, models are pre-trained using self-supervision, in order to obtain 
semantic knowledge of the underlying distribution, which may aid in further down
stream tasks. These pre-trained models are then typically fine-tuned on a supervised 
dataset for which target labels are available. This fine-tuning dataset can be orders of 
magnitude smaller than the datasets used for pre-training. This allows models that were 
previously intractable to be employed. However, additional care should be taken to 
ensure the model does not overfit to the underlying distribution of data.
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3.2.8. Bidirectional encoder representation from audio transformers
Chen et al. (2022) presents a ssl technique for iterative audio pre-training of bidirectional 
encoder architectures, such as transformer-encoders and bidirectional long short-term 
memory networks (BiLSTMs). The method consists of a teacher-student configuration in 
which semantic knowledge about the data is obtained, through iterative knowledge 
distillation, without the use of target labels. The method starts with a tokeniser in the 
form of a set of codebook embeddings that have been randomly initialised, and therefore 
contain no learned information. The input spectrogram is divided into 16� 16 patches 
and passed through a learnable projection layer. The projected patches are compared 
using a nearest neighbour match with the codebook embeddings. The retrieved codebook 
embedding is used as the target label for the bidirectional encoder (teacher model).

The bidriectional encoder is then trained to map the given input spectrogram to the 
target labels, produced by the tokeniser. As for the tokeniser, the input spectrogram is 
divided into patches and passed through a linear projection layer. A random attention 
masking scheme is applied to the resulting patch embeddings, obscuring both features in 
time and frequency. Only the unmasked patch embedding is passed to the bidirectional 
encoder to obtain a latent representation of the respective unmasked patches. These 
unmasked latent representations, along with specific masked tokens in place of the 
masked latent representation [M], are passed to the label classification layer, typically 
a single linear layer with a sigmoid activation function. The predicted label, for each 
masked token, is compared with the target label generated by the tokeniser through 
a masked loss function, such as masked cross entropy. Hence, the loss is only evaluated 
between target labels and masked tokens. This in turn forces the model to embed 
semantic information about the predicted unmasked tokens within the masked tokens 
while only using a small subset of the input features. Once the bidirectional encoder has 
been trained, a new set of target labels is generated and used as ground truth values for 
the tokeniser model, discarding the previous tokeniser’s target labels.

During subsequent iterations, the tokeniser codebook embeddings are trained on the 
new output labels from the encoder model. The new tokeniser target labels are compared 
to the teacher target labels through cosine similarity, and a set of learnable codebook 
embeddings are obtained. Once the tokeniser has been sufficiently trained, a new set of 
target labels is generated, which is used to retrain the encoder model.

This process of training the encoder model using the tokeniser labels and distilling the 
encoder class estimates into the tokeniser is repeated several times for a large unlabelled 
audio dataset, such as AudioSet-2 M1 (Gemmeke et al. 2017) and is referred to as self- 
distillation (Chen et al. 2022). The result is a encoder model that has been pre-trained to 
estimate a set of quantised target labels from an unlabelled dataset. This pre-trained 
model can then be fine-tuned on a domain-specific source set, through transfer learning.

4. Literature review

In the following, we review the literature associated with two distinct objectives, namely 
elephant call classification and elephant call detection. Both fall within the realm of 
bioacoustic classification but have received limited attention in the research literature. 
Table 1 provides the quantitative summary of the results for the literature considered in 
this review.
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Call detection is the task of determining whether a particular audio signal contains an 
elephant call or not. A related task in call detection is call endpointing, where the start and 
end of the call are identified within an audio signal. When call detection is performed at 
discrete time steps, the call endpointing is implicitly performed. To our knowledge, no 
work in the literature has focused on explicit call endpointing for elephant vocalisations. 
Call classification is a sequence classification task in which a short segment of audio is 
considered to identify the particular type of call. While call classification is always 
a multi-class task, call detection can be either binary or multi-class. To our knowledge, 
the literature currently does not consider explicit multi-class elephant call detection. Call 
classification can be viewed as a down stream task of either call detection or call 
endpointing.

Leong et al. (2003) worked on standardising the classification of African elephant calls, 
utilising measurements such as bandwidth, sound quality, fundamental frequency, infra
sonic elements, and duration. The authors identified eight distinct call types, including 
three rumble variants that were distinguished by their bandwidth. A cross-correlation 
analysis was performed on the fundamental frequency contour of all rumble calls, the 
most common type, revealing five rumble categories. However, multidimensional scaling 
showed minimal clustering among call types, implying either overlapping rumble types 
or that the fundamental frequency contour may not be the primary physical property 
conveying the meaning of these signals.

The first application of speech processing techniques to the classification of elephant 
vocalisation signals, that we are aware of, was conducted by Clemins and Johnson (2003) 
and Clemins et al. (2005). These authors considered mel frequency cepstral coefficient 
(MFCC) features, manually adjusting the mel-scale to account for the infrasonic nature 
of elephant calls. Along with MFCCs, the log frame energies of the recordings were used 
to classify elephant vocalisations using a hmm. The authors obtained a 5-class (croak, 
rumble, rev, snort and trumpet) average call classification accuracy of 79.74 on a balanced 
set containing 74 vocalisations. The classification accuracy improved to 94.29 when 
omitting noisy recordings, using the same dataset and labels as Leong et al. (2003). 
Wood et al. (2005) went on to show that, by applying model-based cluster analysis to a set 
of acoustic features extracted from elephant rumbles, they could identify four distinct 
clusters when using frequency contour features and three clusters when using extracted 
acoustic parameters. Each of these clusters corresponded to specific observed animal 
behaviour, which corresponds with the findings of Leong et al. (2003).

Table 1. Summary of quantitative results for elephant call detection and classification reported in 
literature. Results are not directly comparable, as evaluations were performed on different datasets. 
5-class: 5 class call classification, 2-class: 2 class call classification, Det: binary call detection.

Literature Task Accuracy Precision Recall/Sensitivity Specificity

Clemins and Johnson (2003) 5-Class. 79.7 – – –
Venter and Hanekom (2010) Det. – 85.7 85.7 –
Stöger et al. (2012) 2-Class. 99.0 – – –
Zeppelzauer and Stöger (2015) Det. – – 88.2 86.3
Keen et al. (2017) Det. – – 87.2 91.1
Silva (2017) Det. – 84.0 84.0 –
Bjorck et al. (2019) Det. 91.7 91.4 91.4 –
Leonid and Jayaparvathy (2022) Det. 96.2 93.2 88.2 87.2
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Venter and Hanekom (2010) applied a subband pitch detector, originally 
developed for voice activity detection, to achieve elephant rumble detection by 
locating audio segments within which the pitch varied less than a predetermined 
threshold. The algorithm consists of two steps, first the pitch is estimated for an 
entire audio recording, and subsequently segments of low pitch variability are 
extracted. Each extracted segment is considered a detected elephant rumbles. The 
algorithm is only evaluated on a segment-level, with no results given on the 
boundary endpoint performance. This algorithm achieved for both segment-level 
precision and recall a score of 85.7. Stöger et al. (2012) applied (LDA), an SVM 
and a k-nearest neighbours (k-NN) classifier to distinguish between oral- and 
nasal rumbles. Each classifier used features obtained from a LPC smoothed 
spectrogram representation of the recordings, obtaining 99% Unlike previous 
approaches that relied on call-specific characteristics (such as predefined formant 
frequencies), this approach was fully automatic and made no a priori assumptions 
about the call structure.

The work described above was performed in either a controlled or a captive 
setting, which may not be representative of actual field conditions. Zeppelzauer 
et al. (2013) and subsequently Zeppelzauer et al. (2015) were the first to apply 
automatic classification techniques to free-roaming elephants. Two techniques 
were applied to elephant rumble detection, the first consisting of an SVM classi
fier using Greenwood cepstrum features with additional spectral signal preproces
sing, and the second a template matching algorithm. In the case of the SVM 
classifier, a spectral representation of the entire audio signal is obtained, eight of 
the short time Fourier transform (STFT) frames are averaged before computing 
the Greenwood cepstrum features. A classification is made once for each of these 
aggregated frames (approximately every 120 ms). The template matching algo
rithm achieved a sensitivity of 78.6% and a false discovery rate of 21.4% and 
was outperformed by an SVM classifier, for which the corresponding figures were 
88.2% and 86.3%. Keen et al. (2017) proposed a set of handcrafted two- 
dimensional convolutional kernels (Leung and Malik 2001) and, using an SVM, 
random forest (RF) and AdaBoost classification algorithms, improved on the 
state-of-the-art set by Zeppelzauer et al. (2015) for elephant rumble detection, 
achieving a sensitivity of 87.2 and specificity of 91.0. Silva (2017) goes on to 
propose the use of an SVM classifier with wavelet-based features, achieving 
a precision and recall of 84.0 on the task of elephant rumble detection. Leonid 
and Jayaparvathy (2022) applied a CNN model to public domain data, some of 
which we shall also use in our experimental evaluation. Achieving an average 
recall of 94.4, a specificity of 88.2 and a precision of 89.2.

The work described so far has made use of manual field recordings. Passive 
acoustic monitoring (PAM), an alternative approach to data collection, has 
become a popular means to record large audio datasets autonomously (Wrege 
et al. 2017), and has enabled the use of more sophisticated classification models. 
To our knowledge, Bjorck et al. (2019) were the first to apply a deep neural 
network to automatic elephant call detection to PAM recordings. Using MFCC 
features and a CNN-LSTM classifier, the authors achieve a precision of 90.8 and 
recall of 96.4.
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5. Data

Our experiments were conducted on two audio datasets that contain elephant vocalisa
tions. The first is a compilation of handheld field recordings of the African elephant, 
available in the public domain through the Elephant Voices (EV) conservation project 
(Poole and Granli 2021). The second is a collection of handheld field recordings of the 
Asian elephant, provided by the Linguistic Data Consortium (LDC) (de Silva 2010b). Both 
datasets are of free-roaming elephants. Table 2 provides a high-level comparison of the 
two datasets.

Figure 1 shows three call exemplars from the EV dataset. The spectrograms illustrate 
complex acoustic call structure that varies over time, that contains both harmonic and 
non-harmonic elements.

5.1. Elephant voices project (EV dataset)

Over the course of several years, Poole and Granli (2021) have collected a set of 
recordings of African elephant (Loxodonta cyclotis) vocalisations. The recordings 
were made in three locations: Amboseli and Maasai Mara in Kenya, and Gorongosa 
National Park in Mozambique. A subset of these recordings (approx. 230) is 
available in the public domain. This subset has been annotated according to an 
ethogram presented in Poole et al. (1988) and Poole (1994). Each recording is 
accompanied by a single elephant call type annotation indicating the dominant or 
overarching call type. However, multiple different calls may be present in 
a recording. This data can therefore be regarded as weakly labelled since there is 
only a single label per recording, and there is no temporal information indicating 
the exact time of occurrence of the call. To address this, we have added temporal 
labels to this dataset by manually identifying the start and end of each elephant 

Table 2. Summary of elephant voices (EV) and linguistic data consortium (LDC) 
elephant vocalisations datasets used for experimentation.

Dataset EV LDC

Authors Poole and Granli (2021) de Silva (2010b)
Elephant species Loxodonta africana Elephas maximus
Recording environment Handheld field recordings Handheld field recordings
Recording equipment ARES-BB Nagra Fostex FR-2
Microphone Not specified Earthworks QTC50
Number of call types 27 7
Detail of annotation File-level Within 100 ms
Total recording duration 1 hour 57.5 hours
Of which annotated 36 minutesa 5.4 hours
Number of recordings 226 1577
Average length 14.75 s 131.03 s
Min. 0.49 s 1.25 s
Max. 296.52 s 3889.38 s
Std. dev. 31.48 177.02 s
Number of vocalisations 514 4433
Sampling rate 44.1 kHz 16 kHz
Bit depth 16-bit 24-bit
Number of channels 2 1b

Low frequency cut-off Not specified 3Hz
aThe second channel is used for field notes. 
bAnnotations provided by authors, as described in Section 5.1.
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Figure 1. Log-scaled power spectral representation of three different elephant call exemplars drawn 
from the Elephant Voices (EV) dataset. The inset for each subfigure shows a magnified view of the low 
frequency spectral content.
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vocalisation. The addition of these strong labels allows the dataset to be used not 
only for elephant call classification but also for call detection and endpointing. The 
resulting time-labelled dataset contains 922 unique vocalisations spanning 36 min of 
audio in 230 recordings of the total 1-h recording duration. All recordings were 
made using an ARES-BB Nagra recorder. However, the model of the microphone 
used is not specified. This dataset is similar to the data used by Leonid and 
Jayaparvathy (2022), thus making results the reported comparable to the findings 
in their study.

5.2. Asian elephant vocalisations (LDC dataset)

The Linguistic Data Consortium (LDC) hosts a dataset of Asian elephant (Elephas 
maximus) vocalisations recorded and annotated by de Silva (2010b). The dataset consists 
of 57.5 h of Asian elephant vocalisation recordings, made in the Uda Walawe National 
Park, Sri Lanka; of which 31.25 h have been annotated. The vocalisations are identified 
based on those that show clear fundamental frequencies (periodic), those that do not 
(aperiodic) and those that show both periodic and aperiodic regions. In this way, seven 
unique call types can be identified (McKay 1973). The dataset is strongly labelled and 
includes the diarisation for up to four overlapping elephant vocalisations. To allow 
accurate diarisation, the dataset is annotated in a multi-label fashion, which allows 
more than one call type to occur at the same time. Field recordings were made using 
a Fostex FR-2 field recorder and an Earthworks QTC50 microphone (capable of record
ing infrasonic signals down to 3 Hz).

5.3. Call annotations

The EV and LDC datasets have been annotated using different labelling schemes (McKay  
1973; Poole et al. 1988). These differences not only relate to the terminology used by the 
authors but also to intrinsic differences in the ecological behaviour and acoustic proper
ties of the vocalisation of the two different elephant species. Langbauer (2000) presents 
a unified annotation scheme for elephant vocalisation and compares the differences 
between annotation styles used in the two datasets we consider. Table 3 summarises 
the different call types in each of the two datasets according to this unified annotation 
scheme, and specifies total call duration and number of occurrences, for each dataset, 
respectively.

Each dataset does not contain the same range of call types. However, both corpora 
contain rumble, trumpet and roar, allowing for comparison of classifier performance 
across datasets for these call types. While both corpora contain croak and squelch, there 
are insufficient samples of these call types to reliably evaluate classifier performance. 
Furthermore, the snort, nasal-trumpet, husky-cry and truck-like call types have been 
omitted, due to an insufficient number of occurrences to allow cross-validation.

Figure 2 shows the prevalence for each respective call type in each corpus. From this 
figure, it is clear that both datasets are severely unbalanced, with the rumble call type 
dominant in both, followed by roar and squelch in the LDC dataset and trumpet and roar 
in the EV dataset. The rumble and roar call type occurs with approximately the same 
frequency in both datasets. To address this class imbalance, performance metrics will be 
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computed for each class independently and the average over all classes taken. There is 
also a considerable difference in the number of segments, the LDC dataset containing at 
least an order of magnitude more segments for each call type.

5.4. Composite calls and subcalls

Elephants also produce a series of amalgamated calls, referred to as composite calls (Poole  
2011). These calls consist of a combination of two or more fundamental call types (e.g. 

Table 3. Call types present in the elephant voices (EV) and the linguistic data consortium (LDC) 
corpora, according to the unified annotations convention proposed by Langbauer (2000). The number 
of segments for each call type, the total duration of each call type, and the associated target label are 
listed. The number of cross-validation folds is denoted by K and is smaller for EV due to its smaller size.

EV K ¼ 5ð Þ LDC K ¼ 10ð Þ

Langbauer (2000) call type # Segments Total duration [sec] # Segments Total duration [sec]

Advertisement of hormonal state
Oestrous rumble 40 169.7 – –
Musth rumble 6(b) 34.2 9(a) 11.0

Advertisement of emotional state
Female chorus 23 198.8 – –
Long roar – – 150 413.3
Roar 19 42.1 47 76.0
Mating pandemonium 18(b) 177.8 – –
Play trumpet 9(b) 7.5 – –
Social trumpet 4(a) 6.4 – –
Trumpet blast 27 49.8 – –
Snort 6(b) 7.6 – –
Trumpet 28 54.4 144 195.9
Rumble 162 695.6 183 1234.2
Chirp-rumble – – 23 77.9
Croak-rumble – – 11 19.8

Group cohesion and coordination
Growlc – – 2972 15476.7
Let’s go rumble 6(b) 35.5 – –
Contact rumble 40 138.8 – –
Greeting rumble 40(b) 178.7 – –

Affiliative
Cry 9 13.17 — —

Misc
Squelch 6 11.5 43 53.4
Squeak — — 423 250.5
Croaking 5(b) 29.4 — —
Woosh 4(a) 6.6 — —
Bark — — 35 35.4
Trunk call 8 23.8 — —
Ceremony 18 227.4 — —

Composite
Long roar-rumble — — 254 1074.4
Roar-rumble 5 15.4 75 255.2
Bark-rumble — — 142 450.3
Rumble-cry 6 10.0
Total 489 2134.2 4511 19624.1

aOmitted due to fewer than one segment per cross-validation fold. 
bOmitted due to fewer than one recording per cross-validation fold. 
cBased on the findings in de Silva (2010a), the Asian elephant’s growl is acoustically similar to the African elephant rumble 

identified by Poole et al. (1988).
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rumble and roar) produced as a single vocalisation (e.g. roar-rumble). Composite calls 
have received limited attention in literature, but have been observed to indicate excite
ment or disturbance (Poole 2011). For the purpose of our experiments, these calls have 
been annotated based on their fundamental call types, for example, the start of a roar- 
rumble would be annotated as roar, while the end would be annotated as rumble without 
any separating silence. As the vocalisation transition is seamless between the different call 
types, the exact transition boundary may be difficult to annotate exactly.

Elephants do not only exhibit vocalistions that form part of their major call 
types, such as rumble and roar, but also have more nuanced calls referred to as 
subcalls (Poole 2011). These calls accompany particular elephant behaviour during, 
for example, parent–offspring interactions, hormonal and emotional state and social 
interaction. As this behaviour cannot be determined based only on the major call 
types, automated subcall classification is the first step towards automated non- 
invasive elephant behavioural classification. We perform subcall classification 
experiments only for the EV dataset, as the LDC data do not contain subcall 
annotations. Figure 3 shows the spread of the subcalls types used for experimenta
tion. Some subcalls are too infrequent to perform cross-validation and have thus 
been omitted.

5.5. Cross-validation

When developing machine learning-based models, separate training, testing and devel
opment datasets are required. Since our datasets are small for most vocalisation classes, 
we have partitioned our data into training, testing, and development datasets with a view 
to cross-validation (Mosteller and Tukey 1968; Stone 1974).

Figure 2. Number of occurrences of each call type in the Elephant Voices (EV) and the Linguistic Data 
Consortium (LDC) corpora. Some call types are omitted from experiments due to an insufficient 
number of occurrences to allow cross-validation. Each included call type has been annotated with the 
class prevalence of each call type, within their respective dataset.
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K-fold cross-validation partitions the data into K disjoint subsets referred to as folds. 
In a sequence of K turns, each of the folds is held out as a test set, while the remaining 
K � 1 folds are used for model training.

Nested cross-validation extends this process by introducing an inner and outer turn. 
For each outer turn, a test fold is kept aside for testing. For each inner turn, from the 
remaining K � 1 training folds a development fold is held out for parameter selection 
and model performance validation while training the model on the remaining K � 2 
folds. The best performing model, based on the K � 1 inner fold development sets, is 
chosen and retrained on the complete inner fold while still excluding the outer (test) fold. 
Hence, for each inner turn, a different fold is used as a development set. The optimal 
hyperparameters for each outer turn are selected based on the average inner turn 
development loss.

When dividing a dataset into folds (subsets), it is important to ensure that the class 
distribution remains even. Stratification is the process of ensuring the target label 
distribution for a given partition of the data is representative of the overall dataset target 
label distribution. The dataset is partitioned such that each fold is stratified with respect 
to the number of elephant call types, thereby preserving the overall call occurrence 
distribution within each fold. Additionally, no single recording occurs in more than 
one fold.

Cross-validation is especially suitable for small datasets because here the risk of 
choosing a single static test set that is biased due to sampling variation is higher than it 
is for large datasets. Both datasets, in Table 2, are small in comparison to those typically 
used in audio classification (Gemmeke et al. 2017) and sound event detection (Serizel 
et al. 2020) tasks. Therefore, nested K-fold cross-validation with stratified class sampling 
has been used throughout. We employ 5-fold and 10-fold cross validation for the EV 
dataset and LDC datasets, respectively.

Figure 3. Number of occurrences of each subcall type present in the Elephant Voices (EV) corpus. 
Some subcall types are classes omitted from experiments due to an insufficient number of occurrences 
to allow cross-validation.
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5.6. Data pre-processing

The following section describes how the raw audio was pre-processed before it was used 
for model training and evaluation.

5.6.1. Resampling and input normalisation
Since some recordings span several minutes, each recording was first divided into 
shorter intervals while ensuring no call was split. Furthermore, all audio record
ings are resampled to a common 16 sampling rate. The LDC dataset has two 
audio channels, the first containing the animal sound recording and the second 
containing voice memorandums with field notes made during the recording. Only 
the first channel was used in our experiments. The EV dataset also has two audio 
channels, in this case a stereo recording. These channels were averaged to produce 
a single channel recording. Finally, all recordings were normalised to have zero 
mean and a peak amplitude of −1 dB.

5.6.2. Feature extraction
Spectral-temporal feature representations, in the form of mel-frequency spectra and 
mel-frequency cepstra were computed from the resampled audio signal, using a 25 ms 
frame length (Sl), a stride (Ss) of 10 ms and a Hamming window function. While 
these values are common in speech processing tasks, their efficacy has yet to be 
shown for elephant vocalisations. We experimentally evaluate different frame lengths 
Sl and inter-frame stride Ss, for a set of shallow classification models. However, some 
of the pre-trained deep-neural models use a standardised frame length and inter- 
frame stride. In such cases, this configuration was maintained across models, to allow 
the direct comparison between model architectures and to allow for the application of 
transfer learning.

For mel spectrograms, a frame-wise spectral representation is obtained by computing 
a 1024-point dft from a zero-padded and windowed frame. The magnitude of the 
complex-valued discrete spectrum is squared to obtain the real-valued power spectrum. 
The power spectrum is mapped to the mel-frequency scale using a bank of Nm log-spaced 
triangular filters. The resulting mel-scale spectrogram can be further transformed to 
a mel-frequency cepstrum representation by taking the logarithm of the mel-scale power 
spectrum and applying the discrete cosine transform. Of the resulting Nm MFCCs, the 
first Nc coefficients are retained. MFCCs features were only evaluated for shallow 
classification models. The value of Nm and Nc, is both considered to be experimental 
hyperparameters.

6. Call detection, endpointing and classification

Call activity detection is the determination of whether an elephant vocalisation, of any call 
type, occurs in a certain audio signal. We will refer to the task of call activity detection 
simply as call detection throughout. These audio signals can be highly polyphonic, in 
other words, contain multiple other audio sources besides elephant vocalisations. These 
additional sources may be biological (e.g. birds) or mechanical (e.g. vehicles). Call 
endpointing is the task of isolating the beginning and end of a call, within an audio 
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signal. When call detection is performed at discrete time intervals for an audio signal, 
endpointing is implicitly also performed.

We first define a frame as a short, regularly spaced, interval of an audio signal, from 
which a feature vector is obtained. The length of the frame is denoted by Sl and the stride 
between successive frames by Ss (Section 5.6.2). Furthermore, we define a context window 
as a collection of consecutive feature vectors in time. The length of the context window is 
denoted by Wl. The context window serves as the input to a classification model, 
resulting in a single classification output probability. By shifting the context window in 
time using a fixed stride Ws, a series of classification probabilities is obtained. Therefore, 
the context window stride Ws determines the temporal resolution at which the call 
detection and endpointing is performed.

When the feature vector frame length (Sl) is equal to the length of the context window 
(Sl ¼Wl), it means that only a single feature vector is presented to the model as input. 
When the context window length is longer than the feature vector frame length (Wl > Sl), 
it means that a series of feature vectors is presented to the model.

We further define a segment to be an interval of audio that has been endpointed to 
contain a particular call. Figure 4 shows an audio signal containing two segments along 
with the process of extracting frames, computing feature vectors and composing context 
windows.

Call classification is the identification of the type of vocalisation (rumble, trumpet, 
etc.) associated with a call isolated during endpointing (segment). We will regard call 
classification as a sequence classification task, where a single classification label is 
associated with the entire segment. This is in general a multi-class multi-label classifica
tion problem because there are more than two call types (multi-class) and more than one 
call may occur simultaneously (multi-label).

In the above description, call detection is described as a binary classification problem 
(call/no-call). It is, however, also sometimes considered as a multi-class multi-label 

Figure 4. Illustration (not to scale) of the process of constructing a context window consisting of 
a collection of feature vectors from an audio signal. Shown is the context window, for which the 
length in the number of audio samples is denoted by Wl and the stride by Ws. For each context 
window, a series of features vectors is obtained using a frame length of Sl and a stride of Ss. This 
sequence of feature vectors (context window), serves as the model input. Note that, while the frames 
from which the feature vectors are obtained, are shown here to be non-overlapping, in practice these 
frames may overlap (Sl > Ss).
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classification problem, where not only the presence and location in time of the call is 
determined but also its identity (rumble, trumpet, etc.). From here on we shall refer to 
multi-class multi-label call detection simply as multi-label call detection.

Figure 5 illustrates the difference between call classification and call detection.

7. Experimental setup

In this section, we describe the procedure used to train and evaluate the classifiers 
described in Section 3.

For binary call detection, we follow a similar approach to Zeppelzauer et al. (2013). 
Unless otherwise stated, we apply each model to a context window (consisting of one or 
more feature vectors) and compare a single multi-label output. Subsequently, the context 
window is shifted in time, and the next model output is computed.

For call classification, an oracle model is assumed to have segmented the call, 
meaning that the endpoints are obtained from the ground-truth annotations. The 
classifier is then applied to this segment of the audio signal. This results in several 
multi-label classifications probabilities for each time instant in a single call segment 
(Section 6). We compute the average2 of these classifications probabilities over time 
to determine the final classification result for the segment. For model architectures 
that support multi-label output, such as random forest and MLP with a sigmoid 
output activation, no further modifications to the models are required. In the case of 
model architectures that do not, such as logistic regression, we train C binary 
classifiers, one for each of the C classes. In this work, we regard the multi-label call 
classification to be a down stream task of call detection and endpointing. Thus, results 
presented for call classification are assumed to be down stream from an oracle call 
detection system. We evaluate call detection using both a binary (e.g. call/no-call) and 

Figure 5. Mel-spectrogram feature representation of an elephant call used to illustrate (a) call 
detection and (b) call classification. On the left, ŷðiÞd denotes the detection output for the i-th time 
instant, extracted from one recording. The shaded area indicates the context window for which 
a positive detection decision was made. On the right, ŷc denotes the multi-label classification output 
for a single elephant call, already endpointed. Here, the shaded area denotes the endpointed 
segment.
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multi-label (any of rumble, trumpet, etc.) schemes, while we always regard the task of 
call classification in a multi-label scenario.

7.1. Call detection

We perform call detection using two different strategies: (1) applying a classification 
model to a context window repeatedly over time and (2) using a one-to-one sequence 
classification model, both illustrated in Figure 6.

The first strategy takes as input a context window XðiÞ composed of one or more 
sequential features vectors Xði� w

2Þ . . . Xðiþw
2Þ. The feature vectors themselves are obtained 

through the spectral feature extraction methods described in Section 5.6.2 The classifier 
produces a single classification output ŷðiÞd associated in time with the i-th (centremost) 
classification interval of the input context window. Experimentally, we evaluate different 
input context window lengths Wl, while keeping the classification resolution fixed 
(Ws ¼ Cs ¼ 100ms), allowing for comparable results (Section 7.1.1).

The second strategy takes as input a longer context window Xði;kÞ. We refer to this 
longer3 context window as an extended context window in the text for clarity. Instead of 
producing a single classification output, the sequence model produces a series of classi

fication outputs ŷðiÞd . . . ŷðkÞd

h i
associated with classification time instants i to k.t

7.1.1. Target classification labels
In order to obtain target labels for the call detection task, the annotation intervals (start 
and end times) have to be discretised to match the classification resolution, as described 
in Section 6. Since both EV and LDC datasets contain overlapping annotations 
(Section 5.3), due to multiple elephant vocalisations occuring simultaneously, the target 
labels will be encoded in a multi-label fashion.

Figure 6. Model overview of classification models used for call detection. Only a single input sequence 
is shown, and batch processing is omitted from the illustration.
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Each classification target consists of a vector with a dimensionality equal to the 
number of call types present in the task, with an additional label reserved to indicate 
that no call is present (not-call). Each dimension in the target vector corresponds to 
a binary value indicating the presence or absence of that particular call type. This process 
is illustrated in Figure 7.

The annotation intervals for each recording are discretised as follows: First, 
a series of regularly spaced classification vectors are constructed for each record
ing, each associated with the output of the classifier at a different instant. The 
spacing between these vectors are denoted by Cs. Because Cs determines the target 
classification resolution, it should be equal to the context window stride 
(Cs ¼Ws). For each classification vector, a short interval (Cl) of the annotation 
is considered. An annotation label must occupy at least 20 of the classification 
interval (Cl) to be considered a valid label for that classification instant. When no 
other label is associated with such an instant, the no-call label is assigned. 
Figure 7 illustrates the process employed to generate the discrete classification 
targets over time.

The target classification resolution has been fixed to 100 ms for all experiments, 
ensuring that all results are directly comparable. This is achieved by setting 
Ws ¼ Cs ¼ 100ms. We also fix the length of the classification interval 
to Cl ¼ 100ms.

This classification scheme allows the model input parameters to be changed without 
affecting the classification interval. In other words, the context window length Wl and 
feature vector extraction frame length Sl and stride Ss can be chosen independently of the 
classification interval and allows for these parameters to become experimental 
hyperparameters.

This configuration also allows for context windows to extend beyond the classification 
interval (Wl >Cl). In such cases, the classification target is associated with the centre of 
the context window.

Finally, when scoring, the start and end of recordings are truncated according to the 
model with the overall longest context length. This allows for the direct comparison of 
results between models.

Figure 7. Illustration (not to scale) of the target label generation process, for two call types and the no- 
call class. The discrete classification interval length is denoted by Cl and stride by Cs.
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7.1.2. Shallow classification models
As shown in Figure 8a, shallow classification models produce a single output estimate per 
input context window. The context window is shifted in time according to the classifica
tion stride (100 ms), after which the next classification is made. This results in a series of 
classification results for a given audio signal.

We evaluate the shallow models both when using a single spectral frame as input 
and also when providing several concatenated spectral frames (context window). The 
length of the context window (number of concatenated frames) is treated as an 
experimental hyperparameter. Such concatenation can lead to high-dimensional 
input vectors, which may in turn lead to overfitting or poor convergence during 
training. We therefore additionally evaluate principal component analysis (PCA) as 
a dimensionality reduction step. This dimensionality reduction as well as cepstral 
mean and variance normalisation are also considered as experimental 
hyperparameters.

7.1.3. SVM probability calibration
Certain models, such as the SVM, do not produce a class membership probability as 
output. Instead, these models provide a classification score. Probability calibration, in the 
context of classification models, is the process of using an additional classifier or 
regression model to map these classification scores to a class probability. We considered 
two methods of achieving this. The first method is Platt scaling (Platt 1999), which adds 
a logistic regression classifier to the output of the SVM to produce the desired target label 
probability. The second method is isotonic regression (Zadrozny and Elkan 2001, 2002), 
which fits a piecewise-constant non-decreasing function, to the output of the decision 
function. Isotonic regression was chosen as it has shown to offer better performance than 
Platt scaling, especially when sufficient training data are available (Niculescu-Mizil and 
Caruana 2005).

Figure 8. Illustration of the two strategies followed for call detection, described in Section 7.1 On the 
left, ŷðiÞd denotes the classifier output for the i-th (centre) input frame, given the input context window 

XðiÞ consisting of w consecutive spectral features Xði�
w
2Þ . . . Xðiþ

w
2Þ. On the right, ŷðiÞd . . . ŷðkÞd

h i
denotes 

the classification sequence produced by the classifier for frames i to k, given an extended context 
window Xði;kÞ.
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7.1.4. Kernel approximation
In the case of SVM classifiers, we experimentally evaluate the use of different non-linear 
kernel functions. In order to compute the exact kernel function requires on the order of 
OðN3

s Þ computations. This cubic scaling in the number of input samples (Ns frames) is 
computationally intractable for the datasets used in this work. Thus, we consider two 
methods for approximating the kernel function, the first is using Nyström method 
(Williams and Seeger 2000) and the second is Random Kitchen Sinks method (Rahimi 
and Recht 2008). The particular kernel function and kernel approximation methods used 
are left as an experimental hyperparameter. However, we evaluate both the radial basis 
function and a third degree polynomial as a basis for the kernel function.

7.1.5. Convolutional neural network
Beyond shallow classification models, we also evaluate a series of deep convolutional 
classifier architectures, including AlexNet (Krizhevsky et al. 2012), ResNet (He et al.  
2016), and VGGNet (Liu and Deng 2015). Unless otherwise specified, all deep architec
tures were trained using the Adam (Kingma and Ba 2014) optimiser with β1 ¼ 0:9 and 
β2 ¼ 0:999 with binary cross entropy as the loss function. The initial learning rate of the 
optimiser is considered a hyperparameter.

To ensure that the model is adequately trained, we monitor both the training and the 
development loss for convergence, or divergence. If either loss diverges (increases) for 
more than three epochs or converges (remains unchanged within a threshold), the 
training process is terminated. In the case of divergence, we rewind the model parameters 
to the previous state with the lowest developmental loss. For AlexNet and ResNet 
architectures, we also test whether transfer learning on an out-of-domain image dataset 
(e.g. ImageNet) improves performance compared to random initialisation of the model 
(Deng et al. 2009).

Like the shallow classifiers, the convolutional models take a temporal-spectral feature 
representation (mel-spectrogram) as input. The exact configuration of this mel- 
spectrogram is discussed in Section 5.6.2. Context window lengths in the range 0.5 s to 
3 s are considered experimentally, but in all cases, a single classification output associated 
with the centre 100 ms interval of the context window is produced. Hence, like the 
shallow architecture, we use CNNs to achieve call detection by means of context window 
classification, as illustrated in Figure 6a.

We evaluate the standard model configuration for AlexNet (61.1 params.), while for 
VGGNet we evaluate four variations of different size, the largest of which contains 143.6 
parameters. While VGGNet was considered, it lead to no noticeable performance 
increase over AlexNet, and is thus omitted from the results. We consider the five 
standard resnet configuration with the smallest, resnet-18, containing 11.7 M parameters 
and the largest, ResNet-152, containing 60.2 M parameters.

7.1.6. Transformer-encoder
Finally, we evaluate the transformer-encoder as a one-to-one sequence classifica
tion model for call detection, as shown in Figure 6b. As described earlier, unlike 
the context window classification models, which produce a single classification 
probability per input context window, these sequence model architectures produce 
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as many classification outputs as there are input sequence tokens (patches). As the 
classification resolution of the model is determined by the model configuration, 
the extended context window stride does not have to be fixed to Cs ¼ 100ms. As 
such there can be no to minimal overlap between extended context windows, 
leading to greater efficiency. Such models also have the ability to model temporal 
dependency and make estimations based on previous, and in some cases future, 
observations, by means of the self-attention mechanism. Figure 6 provides an 
illustration of such sequence classification models, compared to context window 
classification models.

We choose the AST one-to-one sequence classification model for experimentation, 
described in Section 3.2.6. We evaluate two variants of the AST model: AST-seq and 
AST-cls.

In the first variant, AST-seq, we omit the learned classification token [CLS] that is 
usually prepended to the input sequence, and instead we train an outer MLP classifica
tion layer directly on the output representation of the transformer model (Chen et al.  
2022). As the model produces 2D spectral-temporal representation as output, we average 
the spectral features to obtain a single temporal representation per time step.

For encoder-only transformer models, there exists a one-to-one correspondence 
between the number of input and output tokens (patches). Specifically, for an input 
sequence consisting of N tokens, the model will produce N outputs (Section 3.2.6). In the 
case of the AST architecture, each input sequence token consist of 16 mel frequency bins 
drawn from 16 consecutive spectral frames (16� 16 patches). Thus, a classification 
estimate is produced approximately once every 160 ms (for a frame stride of 10 ms). 
This model classification rate does not exactly match the classification rate of one 
classification per 100 ms used in our other experiments. To address this discrepancy, 
the classification output is resampled using linear interpolation. However, this resam
pling process is not included during model training, only during scoring.

In addition to the AST-seq variant, we also evaluate the standard AST model archi
tecture as proposed by the Gong et al. (2021), which uses the learned classification token 
[CLS] from which the single call classification probability is produced. This variant of the 
model is referred to as AST-cls. Note that while AST-seq is a sequence classification 
model producing a series of classification probabilities for a given extended context 
window, AST-cls is a traditional classification model that produces on a single output 
per context window.

Furthermore, we experimentally evaluate the effectiveness of training the AST model 
from a random initialisation, as well as pre-training the model using the self-distillation 
scheme presented by Chen et al. (2022) on AudioSet (Gemmeke et al. 2017). During fine- 
tuning, we employ a training regime, similar to that proposed by Vasconcelos et al. 
(2022), in order to preserve semantic information obtained during pre-training. That is, 
for the first 10 epochs of training, the backbone feature extraction neural network is fixed 
(no gradient update is performed). After this, the backbone network is updated with 
a learning rate that is 1 of the outer MLP classification layer’s learning rate. The backbone 
learning rate is then increased over the next two epochs to match the overall learning 
rate. This technique is common practice in fine-tuning models as it reduces the chance of 
losing transferable semantic information learned during pre-training and has been 
showed to improve performance on classification tasks (Vasconcelos et al. 2022). The 
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model’s parameters are optimised using the AdamW (McInnes et al. 2018) optimiser 
with β1 ¼ 0:9 and β2 ¼ 0:98, and a weight decay factor of 0.01.

7.2. Call endpointing

Call endpointing refers to the specific task of locating the precise beginning and end of an 
elephant vocalisation within a continuous audio recording. The resolution of the call 
endpointing is determined by the classification resolution of the model (msCs ¼ 100ms). 
By accurately identifying the start and end times of elephant calls, the efficiency and 
accuracy of subsequent data processing tasks is enhanced.

Endpointing is performed implicitly in this work, through binary call activity detec
tion as described above. In order to achieve endpointing, a threshold (e.g. θ ¼ 0:5) is 
applied to each of the call detection probabilities over time to classify each time instant 
(context window) as a positive (call, presence) or negative (not-call, absence). The start of 
a segment (new call) is identified by a negative call detection followed by a positive (rising 
edge), the end of segment (call) is identified by a positive call detection followed by 
a negative (falling edge).

7.3. Call classification

Call classification aims to determine which calls are present in a given audio segment. 
The task of call classification seeks to determine which of the major or subcall types 
a particular audio sequence belongs to. In sound classification tasks, it is typically 
assumed that there is a single dominant acoustic source present and that the audio is 
already endpointed – i.e. the start and the end of the call are also the start and end of the 
presented audio segment. This implies that there is no temporal context indicating for 
where in the overall recording the call occurs.

In order to perform call classification, we employed the same models used for call 
detection and therefore also the same selection of hyperparameters. Each segment is 
divided into several context windows, for which the classification model produces 
a single classification per context window. This results in a series of call detection 
probabilities over time for each call segment. Call classification is achieved by averaging 
the call detection probabilities over the endpointed segment. This average is considered 
the output of the call classifier models.

As before, the target label for each segment is obtained from the annotations. 
However, a single multi-label target output is assigned to each call segment to be 
classified. In cases where neighbouring calls overlap with a given segment, the neigh
bouring call must occupy at least 50 of the call segment to be considered present. This 
does, however, mean that the interval between overlapping calls are evaluated twice, once 
for the first segment and again for the succeeding segment.

7.4. Performance evaluation metrics

Several performance metrics will be used to assess the ability of the models to perform 
call detection, endpointing and classification, as described in the previous sections.
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7.4.1. Dealing with class imbalance
The datasets utilised in this study exhibit considerable class imbalance, an issue that is 
prevalent in many animal vocalisation studies (Section 5.3). This disparity may distort 
performance assessments based on certain metrics. To mitigate the influence of class 
imbalance on multi-label classification results, we implement two scoring strategies: one- 
vs-one scoring and macro-averaging across all classes.

7.4.1.1. One-vs-rest classification. In multiclass scenarios, binary classification metrics 
can be applied by considering comparisons between a target class (positive) and all the 
other classes (negative). This approach produces a set of scores for each classification 
category and is referred to as one-vs-rest classification. However, one-vs-rest metrics 
remain vulnerable to class imbalance (Bishop and Nasrabadi 2006; Lorena et al. 2008).

7.4.1.2. One-vs-one classification. A variation of one-vs-rest classifiers is the one-vs- 
one approach, in which a single target class is contrasted with a single different class, for 
instance, rumble-vs-trumpet. One-vs-one scores demonstrate resilience to class imbal
ance when employing robust metrics. Since all classifiers presented in this paper include 
an explicit no-call class, we evaluate each class as a binary classifier versus the no-call 
class (e.g. rumble-vs-no-call).

7.4.1.3. Multi-class macro-averaging. Certain classification metrics, such as classifica
tion accuracy, may suffer from misleading results if the dataset is unbalanced. One way of 
overcoming this is to compute the metric for each respective class (one-vs-rest or one-vs- 
one) and then compute the average. Since each individual metric is normalised within its 
class, this avoids skew. Using one-vs-one, as individual metrics has been shown to be 
more robust to class imbalance (Bishop and Nasrabadi 2006; Lorena et al. 2008).

7.4.2. Classification metrics
Call classification performance was assessed using the binary metrics: sensitivity, speci
ficity, precision and recall, and derived quantities. All performance metrics reported are 
calculated separately for each outer cross-validation fold and then averaged. We consider 
if a particular call type is present as a positive class and vice versa. We treat each separate 
class (call type) as its own binary classification problem (multi-label).

7.4.2.1. Specificity and sensitivity. Specificity measures the true negative rate, i.e. the 
proportion of true negatives among all actual negatives, given by: 

Sensitivity, also known as recall, measures the proportion of true positives among all 
actual positives, given by: 

A high specificity implies a low false positive rate (FPR), while a high sensitivity implies 
a high true positive rate (TPR).
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7.4.2.2. Receiver operating characteristic. Specificity and sensitivity reflect classifica
tion performance at a single operating point (i.e. decision threshold). Increasing the 
decision threshold will result in an increase in the system’s sensitivity, at the cost of 
a decrease in its specificity, and vice versa. The receiver operating characteristic (ROC) is 
to visualise the trade-off between system specificity and sensitivity. An ROC curve is 
drawn by plotting a locus of TPR against FPR for a series of decision thresholds.

7.4.2.3. AUC ROC. The area the ROC curve (AUC ROC) provides a single-figure 
indication of classifier performance across all decision thresholds. An AUC ROC score 
of 1:0 indicates a perfect classifier, whereas a score of 0:5 indications the classification 
performance achieved by guessing the prior probability (i.e. a random classifier).

7.4.2.4. Precision and recall. As alternatives to specificity and sensitivity, two other 
commonly used metrics are precision and recall. Recall is equivalent to sensitivity. 
Precision is the ratio of true positive (TP) classifications to the total number of 
positive classifications (PP) made by the model. It measures the proportion of 
correctly identified positive instances (true positives) out of all the instances labelled 
as positive (both true and false positives). For a binary classifier, precision is defined 
as: 

7.4.2.5. Precision-recall curve. The precision–recall curve is the analogue of the ROC 
curve. In this case, we vary the decision threshold and obtain a locus of precision and 
recall values. Unlike the ROC curve, the precision–recall curve is not monotonically 
increasing.

7.4.2.6. Average precision. For a binary classifier, the area underneath the precision– 
recall curve is defined as the average precision (AP). If the score is evaluated in a multi- 
class scenario, the average over all classes is computed and is referred to as the map.

7.4.3. Detection and endpointing metrics
For the task of call detection, models were evaluated based on coverage and purity as well 
as the Jaccard index. These metrics are accepted practice in the field of acoustic segmen
tation (Kemp et al. 2000).

7.4.3.1. Boundary precision and recall. When applied to endpointing, the metrics preci
sion and recall can be computed based on the number of correctly detected boundaries. In 
this case, recall represents the number of boundaries that are correctly detected as a fraction 
of all postulated boundaries, while precision reflects the fraction of postulated boundaries 
that are indeed correct. Using precision and recall in this manner requires the introduction of 
a boundary tolerance parameter. A postulated boundary that falls within this margin of a true 
boundary will be regarded as a TP. This parameter must be kept constant between experi
ments to ensure that the associated metrics are directly comparable.
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7.4.3.2. Coverage and purity. Coverage and purity are popular metrics in the speaker 
diarisation field. The metric is used to evaluate how well a postulated segment is 
representative of the ground truth segment. These metrics pose as an alternative to 
boundary precision and recall, and benefit from not requiring an explicit boundary 
tolerance. However, due to the discrete evaluation of the metric, the interval between 
successive classification time instants (Cs), imposes an intrinsic scoring resolution.

For a binary classifier applied to a portion of the signal, coverage is defined as the ratio 
between the correct positive classifications at each time instant and the number of 
positive samples. Therefore, coverage is merely recall computed over an interval, and is 
indicative of how well the classifier is able to detect calls. The associated precision metric 
is known as purity, and reflects the fraction of positive classifications that are indeed 
correct, calculated over an interval. Purity provides insight into how precise the positive 
classifications are. The combination of these metrics aims to measure a models’ tendency 
to over- or under-segment a sequence.

Over-segmentation is the result of a model that over-eagerly identifies boundaries in 
a sequence, thus leading to excessive fragmentation. Such models generally exhibit an 
increased number of false-negative classification and thus lead to a decrease in coverage, 
but also tend to exhibit high purity. On the other hand, under-segmentation occurs when 
decisions are overly conservative, leading to an increase in false-positive classifications, 
and thus a reduction in purity while maintaining a high degree of coverage. The ideal 
segmentation model would have both high coverage while maintaining a high purity 
score. Figure 9 illustrates both over- and under-segmentation.

7.4.3.3. Jaccard index. The final metric of we describe is the Jaccard index. While 
predominantly used in image segmentation tasks, where it is known as IoU, or numerical 
set similarity, it has seen application in one dimensional segmentation tasks. The Jaccard 
index of two sets is defined as follows: 

Figure 9. Illustration of over- and under-segmentation for a binary classifier. While the illustration 
depicts a continuous segmentation process, in this work we perform segmentation using classification 
labels that are discrete in time. The ground truth signal indicates call presence (P, positive) and call 
absence (N, negative). Furthermore, the classifier output has been annotated as true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN).
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where y and ŷ are the ground truth and the classifier output, given that the class is the 
same yc ¼ ŷc

� �
, while \ and [ are the intersection and union between two sets, respec

tively, and j � j is the cardinality of the set (in our particular case the duration of the 
classification intervals). For a binary classifier, the Jaccard index is given by: 

The Jaccard index is a measure of the system’s segmentation localisation ability. The 
Jaccard index is bound between 0:0 and 1:0, where 1:0 indicates a perfect segmentation 
model.

The Jaccard index accounts for both the coverage and purity of a segmentation model. 
One can thus not distinguish purely based on the Jaccard index whether a model is 
suffering from over- or under-segmentation. However, the Jaccard index encapsulates 
the overall segmentation performance as a single number.

7.5. Hyperparameter selection

In this section, we review our findings regarding the observed hyperparameters selections 
for our experiments. The hyperparameters have been selected by employing nested cross- 
validation, described in Section 5.5 The best model is determined based on the model 
hyperparameter configuration with the lowest loss across for the inner cross-validation 
folds. This results in K � 1 experimental configurations, from which the most common 
hyperparameter choices (mode) used to re-train the model on all inner folds (i.e. no 
development set). This final model is evaluated on the respective outer fold. This is 
repeated for all outer folds. Finally, the K outer fold scores are averaged to obtain the 
overall performance.

7.5.1. Feature extraction parameters
In the following section, we discuss the spectral extraction feature selection, using a LR 
classifier for the task of binary call activity detection. For this architecture, we tested 
a broad range of STFT, mel-spectrum and MFCC configurations.

Initially, we experiment by using a single MFCC feature as input to the LR classifier, 
we denote this model as LR-frame. Our findings indicate that, when only a single MFCC 
frame is taken as input, increasing the STFT frame length from 25 ms (typical in speech 
applications) to 100 ms consistently enhanced performance. Although there is 
a discernible pattern favouring a minimal number of mel triangular filters (64 mel filters), 
the quantity of MFCC retained does not appear to negatively impact performance. These 
higher order MFCCs are known to encode speaker pitch information when applied to 
speech signals. Further subsequent analysis of these coefficients revealed reduced statis
tical variance of these coefficients compared to the lower order MFCCs. We thus believe 
that while the use of these higher order cepstral coefficients did not strongly impact 
classifier performance, their utility when processing elephant vocalisations still remains 
uncertain.
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Subsequently, we considered using multiple neighbouring MFCC features (context 
window) as input to the classifier and denote this classifier simply as LR in our results. 
The features from the context window are optionally (hyperparameter) averaged to 
a single frame, or concatenated together to form a single higher dimensional feature 
vector, or a dimensionality reduction technique (such as PCA) is applied. In contrast to 
LR-frame, our experiments show that, when using a context window, reducing the STFT 
frame length to 50 ms led to improvements for both datasets. The choice of a smaller 
number of mel filters did not generalise to the context window input experiments. 
Instead, we found that a larger number of mel filters led to better performance. 
Furthermore, retaining only the lower order (31) MFCCs lead to further improvements.

As noted before, the higher order MFCCs exhibited reduced variance compared to 
their lower order counterparts. Further experimentation employed PCA as 
a dimensionality reduction instead of discarding the higher order MFCCs. The number 
of principal components to retain was chosen such that the explained variance is 95 of the 
total features (7 components). The choice of PCA dimensionality reduction technique 
stemmed for the observed reduced variance in the higher order MFCCs. Employing PCA 
as a preprocessing step outperformed the naïve approach of merely discarding the higher 
order coefficients.

The multi-frame LR models exhibited substantially better performance than their 
single frame counterparts.

7.5.2. Multi-layer perceptron
From our experiments, we found that, over both datasets, the MLP architecture and the 
layerwise dropout probability lead to the most substantial performance enhancement on 
the development sets. A choice ranging between 10% and 15%, lead to consistent 
performance improvement. Contrary to expectations, an encoder structure with decreas
ing hidden layer dimensions as network depth increased did not result in the best 
performance. Instead, maintaining a consistent hidden layer dimension proved to be 
the most effective approach.

While deeper MLPs (more than five layers) showed improved performance on certain 
development folds for the EV dataset, shallower structures, comprising two to four layers 
(less than 1 million parameters) consistently outperformed the deeper MLP models. 
However, this trend did not generalise to the LDC dataset, where deeper models con
sisting of five to seven layers (containing up to 10 million parameters) exhibited superior 
performance. This can be attributed to the difference in dataset sizes.

The activation function used in the hidden layers had minimal impact on overall 
performance. Furthermore, batch normalisation adversely affected model performance 
for both datasets.

7.5.3. Support vector machine
In contrast to LR and MLP, no noticeable performance improvement was achieved by 
optimising the context window, or MFCC configuration when using an SVM classifier. 
The range of MFCC configurations was not as extensive as for LR-frame, only evaluating 
the top performing configurations. However, the choice of a long context window with 
a PCA dimensionality reduction step to five components (92.5% explained variance) 
consistently leads to better performance. The choice of kernel approximation function 
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had the most significant impact on overall performance. The Nyström method lead to 
a reduction of 50 on the developmental loss, compared to the Random Kitchen Sinks 
method, matching the exact kernel performance on the EV dataset. The radial basis 
function (RBF) was the best overall performing basis function.

7.5.4. ResNet
Out of the standard ResNet configurations (ResNet-18, ResNet-34, ResNet-50, ResNet-101 
and ResNet-152) evaluated, resnet-101 performed the best when evaluated on the LDC 
dataset. While, the best configuration for the EV dataset was ResNet-18. In both cases, 
a context window of 2.5 s, performed the best overall. There was no clear trend on the 
choice of learning rate or batch size for training the ResNet models.

7.5.5. AlexNet
As expected, CNN see improved performance with longer context windows. When using 
AlexNet, the best performance was observed with a context window of 2.5 s, the same as 
seen for the ResNet architecture.

7.5.6. In-domain pre-training
The AST model was evaluated using model weights that had been pre-trained on 
AudioSet as well as weights that had a random initialisation. When training from the 
random initialisation, the model would not generalise well and resulted in poor devel
opment set performance.

7.5.7. Out-of-domain pretraining
The impact of out-of-domain pretraining was assessed for both ResNet and AlexNet 
architectures. It was observed that pretraining these models on out-of-domain ImageNet 
data resulted in marginal improvements in performance compared to random initialisa
tion. However, when fine-tuning from a pre-trained model, the AST model outper
formed all other architectures. Utilising a pre-trained model weights required lowering 
the initial learning rate of the optimiser. In the case of ResNet, this approach facilitated 
the use of larger models. However, these did not yield any further enhancements in 
classification performance. Consequently, employing a smaller ResNet model may be 
more advantageous due to its better computational efficiency. Pre-training AlexNet on 
ImageNet led to marginal performance improvements. Remarkably, the optimal model 
parameters were obtained after just one epoch of training when initialised with pre- 
trained weights, thereby significantly reducing computation time. Notably, in both 
ResNet and AlexNet models, a reduction in the initial learning rate by two orders of 
magnitude was necessary, compared to training from random initialisation, to achieve 
generalisable performance.

8. Results

The following section described the results obtained for the experiments set out in 
Section 7.
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8.1. Call detection and endpointing

The following experiments assess how well a classification model can perform elephant 
call activity detection and implicit call endpointing, using the procedures described in 
Section 7.1 Model detection performance will be assessed based on the AP score, while 
the endpointing performance will be assessed using the Jaccard index. Table 4 presents 
experimental results for elephant call detection. The table shows that, across both 
datasets, the AST-seq achieves better performance than all other considered models, 
followed by CNN-based models (AlexNet And ResNet) and then the MLP.

The AST-based models clearly outperform the other models, obtaining an AP score of 
0.962 for call detection. We speculate this is due to the attention-mechanism used by the 
transformer-encoder architecture, which allows the model to selectively focus on areas of 
interest within the extended context window. Other models have a reduced context 
window length and also do not have the ability to selectively ignore potential adversarial 
acoustic events. While the AST-seq model makes more errors per time instant than the 
AST-cls model, informal inspection of the model decisions revealed that these errors tend 
to occur near the boundaries of the vocalisation segment. Further inspection revealed 
that some call boundaries postulated by the model may be more precisely aligned with 
the vocalisation that the human annotated labels do. In contrast, the detection errors 
made by the other models (in particular the shallow models) are the result of entire 
vocalisation segments being falsely classified.

From the Jaccard index, we see that the AST-seq model produces the best segment 
alignment with the ground truth annotations, achieving a Jaccard index of 0.830. 
However, the high purity and lower coverage indicate that the model tends to over- 
segment a given audio sequence. Anecdotally, we observe this behaviour particularly in 
vocalisations that have long tails. In such cases, the model may divide the vocalisation 
into two or more segments. In contrast, AST-cls tends to under-segment, resulting in 
missing call boundaries. We observe this in the lower specificity score, indicative of 
falsely classifying a segment as a vocalisation. When computing the average model output 
over the segment, inserted boundaries have a smaller impact on the final classification 
than missing boundaries, thus resulting in improved call detection results. Thus, the 
AST-seq model is the best performing endpointing model, followed by AST-cls and 
resnet models, achieving a Jaccard index of 0.798 and 0.788, respectively.

We observe that the convolutional models, AlexNet and ResNet, are also strong 
contenders for call detection, matching the transformer models in some metrics. We 
speculate that is due to the positional invariant and therefore robustness of the CNN 
features. The CNN models also benefit from increased spectral-temporal resolution in 
comparison to the AST architecture. The first step in the AST architecture is to divide the 
input spectrogram into patch embeddings, which is a downsampling step. This step is 
required to improve the computational efficiency of the model. However, it may result in 
loss of information that is useful in discerning small variations between features. Finally, 
we see that there is a larger performance gap between the CNN and transformer 
architecture when more data is available, as is the case with the LDC dataset.

Overall, the deep neural architectures out-performed the shallow classification models 
in the task of elephant call activity detection. An interesting observation is how well the 
SVM classifier performs. The performance improvement between SVM and a model of 
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similar computational complexity such as LR can be attributed to the non-linearity 
present in the kernel function of the SVM classifier. A notable architectural observation 
is that all shallow models saw increased performance when provided with an input 
context of roughly a second in length and the inclusion of a dimensionality reduction 
step. We speculate that this ensures that the models classifications are more robust to the 
noisy features extracted from each frame. We did attempt simply averaging the features 
over time. However, the dimensionality reduction outperformed this approach, particu
larly after statistical whitening of the reduced numerical feature space.

Figure 10 compares the purity-coverage and ROC curves for a selection of the models 
presented in Table 4. From the EV purity–coverage curves, we observe that for 95 
coverage (i.e. successfully identify 95 of the true positives), LR and Alexnet have an 
almost equal purity (which of the detections are indeed true positive) of approximately 
81. This makes LR a computationally efficient way to perform binary detection for 

Table 4. Elephant binary call activity detection results for the elephant voices (EV) and the linguistic 
data consortium (LDC) datasets for all considered models. The reported metrics are averages over the 
K outer folds. The associated standard deviation is given in parentheses.

Dataset Model Purity Coverage AUC ROC AP Jaccard

EV (K ¼ 5) LR 0.829 (0.04) 0.798 (0.05) 0.902 (0.02) 0.937 (0.01) 0.719 (0.04)
SVM 0.853 (0.05) 0.873 (0.04) 0.893 (0.02) 0.928 (0.02) 0.757 (0.03)
XGB 0.857 (0.05) 0.893 (0.04) 0.907 (0.02) 0.946 (0.02) 0.776 (0.04)
MLP 0.869 (0.07) 0.860 (0.07) 0.914 (0.03) 0.943 (0.03) 0.754 (0.03)
AlexNet 0.873 (0.02) 0.891 (0.06) 0.938 (0.02) 0.960 (0.01) 0.787 (0.04)
ResNet 0.876 (0.04) 0.888 (0.02) 0.933 (0.02) 0.957 (0.01) 0.788 (0.03)
AST-cls 0.829 (0.03) 0.955 (0.02) 0.938 (0.02) 0.958 (0.01) 0.798 (0.03)
AST-seq 0.914 (0.04) 0.901 (0.02) 0.940 (0.02) 0.968 (0.01) 0.830 (0.02)

LDC (K ¼ 10) LR 0.286 (0.03) 0.602 (0.04) 0.711 (0.03) 0.419 (0.04) 0.240 (0.02)
SVM 0.634 (0.08) 0.178 (0.02) 0.727 (0.02) 0.404 (0.05) 0.161 (0.01)
XGB 0.664 (0.07) 0.130 (0.02) 0.694 (0.02) 0.370 (0.05) 0.121 (0.02)
MLP 0.665 (0.03) 0.241 (0.02) 0.684 (0.03) 0.421 (0.03) 0.201 (0.04)
AlexNet 0.691 (0.07) 0.498 (0.03) 0.825 (0.03) 0.616 (0.04) 0.403 (0.03)
ResNet 0.633 (0.04) 0.490 (0.03) 0.812 (0.03) 0.606 (0.04) 0.382 (0.05)
AST-cls 0.768 (0.05) 0.578 (0.05) 0.886 (0.04) 0.716 (0.04) 0.504 (0.04)
AST-seq 0.768 (0.05) 0.700 (0.04) 0.918 (0.02) 0.772 (0.06) 0.578 (0.05)

Figure 10. Receiver operating characteristic and coverage–purity curves, for the task of elephant call 
detection, for both Elephant Voices (EV) and Linguistic Data Consortium (LDC) datasets. The baseline 
model (LR) and the top performing model (ast-seq) are shown. The prevalence, which is the 
performance achieved when making random decisions according to the prior.
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further downstream tasks. From the ROC curves, we see that the AST-seq model almost 
always exhibits better performances. Furthermore, we observe from the prevalence (the 
ratio of positive samples to the total number of samples) that the EV dataset is more 
balanced than the LDC dataset. Comparing the ROC and purity–coverage curves, we see 
that the performance of both classifiers has decreased for the LDC dataset.

As discussed in Section 6, elephant call detection can also be viewed as a multi-label task, 
where not just the presence of a call is detected, but in the same step also the type of call. 
Figure 11 compares the purity–coverage curves for an LR, AlexNet and AST-seq models in 
this multi-label scenario, evaluated on a context window basis. We observe that while the 
LR performs well for rumble detection, the AST-seq model offers vastly superior perfor
mance for the roar and trumpet classes. Furthermore, we note that none of the classifiers 
could correctly detect more than 50% of the cry segments, reflected by the coverage score. 
This may be due to the short duration and high energy present in the call type. As a result 
of the acoustic properties of the call, there is no harmonic or formant structure to the call 
type. The poor performance may also be attributed to the small number of samples 
available (Figure 2), where there are roughly only two exemplars per cross-validation fold.

The sudden jump in purity is the result of the classifier correctly identifying a large 
portion of the classification segment after a small change in the classification threshold. 
We found that for these exemplars, the spectral features vectors showed a high degree of 
correlation (cosine similarity) between frames. As a result, we expect these features to be 
close in the respective classifier feature space.

From both Table 5 and Figure 11, we observe that while the shallow classifiers 
achieved commendable performance in the task of binary detection, these models per
form far worse than the deeper architectures for the multi-label tasks. The AST-based 
models, however, remain the top performing candidates.

8.2. Call classification

Next, we assess the classifier’s performance on a segment-level elephant call classification 
task in a multi-label scenario. As stated before, it is assumed that this task is downstream 
from an oracle endpointing model, and thus the segment location in time is computed 
from the annotation labels. Thus, this task assesses how well a model is able to classify an 
entire segment of audio.

We observe that the models that perform well at call activity detection (includ
ing negative class), are also the models that perform well at segment-level classi
fication (excluding negative class) tasks, seen by comparing the results in Tables 5 
and 6.

Furthermore, we observe the same trend in segment-level classification of low- 
resource classes, such as cry, that we saw for detection tasks. Figure 12, shows 
how the worst performing class remains the cry-class. However, in the case of the 
segment-level classification, the AST and other deep architectures all overfit 
(memorised training examples) on the cry-class, while the shallow classifiers 
showed superior performance. In contrast, the opposite is true when evaluating 
the models in a multi-label detection scenario. Such overfitting could in future be 
addressed by employing low-resource techniques such as few-shot learning, where 
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Table 5. Multi-label elephant call detection results for the elephant voices (EV) and the linguistic data 
consortium (LDC) datasets for all considered models. The reported metrics are averages over the K 
outer folds. The associated standard deviation is given in parentheses.

Dataset Model Purity Coverage AUC ROC map Jaccard

EV (K ¼ 5) LR 0.299 (0.04) 0.511 (0.16) 0.798 (0.09) 0.370 (0.08) 0.240 (0.04)
SVM 0.433 (0.09) 0.310 (0.06) 0.839 (0.08) 0.379 (0.06) 0.249 (0.04)
XGB 0.507 (0.07) 0.279 (0.04) 0.833 (0.08) 0.406 (0.05) 0.240 (0.03)
MLP 0.397 (0.12) 0.318 (0.12) 0.853 (0.07) 0.416 (0.07) 0.258 (0.08)
AlexNet 0.515 (0.10) 0.385 (0.10) 0.895 (0.07) 0.484 (0.09) 0.314 (0.08)
ResNet 0.407 (0.13) 0.259 (0.05) 0.847 (0.08) 0.385 (0.08) 0.217 (0.05)
AST-cls 0.530 (0.10) 0.477 (0.12) 0.871 (0.09) 0.514 (0.09) 0.374 (0.09)
AST-seq 0.597 (0.06) 0.475 (0.10) 0.870 (0.09) 0.591 (0.10) 0.409 (0.07)

LDC (K ¼ 10) LR 0.048 (0.01) 0.628 (0.16) 0.722 (0.10) 0.010 (0.06) 0.043 (0.01)
SVM 0.161 (0.07) 0.018 (0.01) 0.711 (0.08) 0.082 (0.03) 0.017 (0.01)
XGB 0.520 (0.14) 0.068 (0.03) 0.776 (0.07) 0.217 (0.09) 0.065 (0.03)
MLP 0.461 (0.20) 0.114 (0.05) 0.825 (0.06) 0.254 (0.10) 0.105 (0.05)
AlexNet 0.579 (0.19) 0.301 (0.10) 0.888 (0.04) 0.390 (0.11) 0.248 (0.08)
ResNet 0.523 (0.19) 0.276 (0.10) 0.883 (0.04) 0.358 (0.11) 0.221 (0.07)
AST-cls 0.543 (0.13) 0.380 (0.10) 0.918 (0.03) 0.434 (0.11) 0.295 (0.07)
AST-seq 0.586 (0.13) 0.411 (0.12) 0.952 (0.03) 0.491 (0.12) 0.328 (0.10)

Figure 11. Purity-detection, both Elephant Voices (EV) and linguistic data consortium (LDC) datasets. 
The baseline coverage curves, for the task of multi-label elephant call activity model (LR) and the top 
performing model (AST-seq) are shown. The prevalence, which is the performance achieved when 
making random decisions according to the prior.
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Figure 12. Receiver Operating Characteristic (ROC) curves, for the task of segment-level elephant 
multi-label subcall classification, for elephant voices (EV) dataset. The baseline model (LR) and the top 
performing model (AST-seq) are shown. The chance, which is the performance achieved when making 
random decisions according to the prior.

Table 6. Segment-level elephant multi-label call classification results for the Elephant Voices (EV) and 
the Linguistic Data Consortium (LDC) datasets for all considered models. The reported metrics are 
averages over the K outer folds. The associated standard deviation is given in parentheses.

Dataset Model Precision Recall/Sens. Specificity AUC ROC

EV (K ¼ 5) LR 0.325 (0.13) 0.525 (0.27) 0.908 (0.06) 0.849 (0.12)
SVM 0.453 (0.17) 0.257 (0.06) 0.947 (0.03) 0.876 (0.09)
XGB 0.416 (0.15) 0.245 (0.05) 0.951 (0.02) 0.866 (0.08)
MLP 0.436 (0.19) 0.304 (0.12) 0.942 (0.02) 0.880 (0.08)
AlexNet 0.492 (0.23) 0.373 (0.13) 0.944 (0.02) 0.920 (0.05)
ResNet 0.406 (0.25) 0.269 (0.07) 0.932 (0.05) 0.881 (0.04)
AST- cls 0.529 (0.10) 0.466 (0.12) 0.954 (0.03) 0.876 (0.12)
AST-seq 0.533 (0.08) 0.458 (0.12) 0.957 (0.01) 0.871 (0.09)

LDC (K ¼ 10) LR 0.119 (0.05) 0.640 (0.20) 0.744 (0.11) 0.759 (0.12)
SVM 0.200 (0.18) 0.001 (0.01) 0.999 (0.01) 0.758 (0.10)
XGB 0.409 (0.17) 0.039 (0.03) 0.999 (0.01) 0.775 (0.07)
MLP 0.470 (0.25) 0.095 (0.06) 0.996 (0.00) 0.867 (0.07)
AlexNet 0.638 (0.17) 0.320 (0.15) 0.993 (0.01) 0.929 (0.05)
ResNet 0.653 (0.26) 0.302 (0.15) 0.991 (0.01) 0.916 (0.05)
AST-cls 0.690 (0.28) 0.390 (0.13) 0.988 (0.01) 0.954 (0.03)
AST-seq 0.730 (0.20) 0.435 (0.13) 0.987 (0.01) 0.957 (0.03)
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a nearest neighbour approach is used in conjunction on the feature representation 
obtained from pre-trained neural network.

8.3. Subcall classification

As discussed in Section 5.4, elephants produce a set of nuanced calls that have been 
shown to strongly correlate with animal behaviour. The ability to automatically identify 
such subcalls would greatly benefit animal monitoring and provide near-realtime indica
tions on herd health and status.

As before, we employ several shallow and deep classification models in order to 
perform segment-level classification of these subcalls. In order to maintain the nested 
cross-validation experimental setup, only a subset of the subcalls can be evaluated 
(Figure 3). Furthermore, only the EV dataset can be used since only it contains the 
required subcall annotations. Hence, the LDC dataset is not used in the subcall 
experiment.

Figure 13 shows that the ROC curves are associated with the results presented in 
Table 7. As before, we observe that the shallow models, while strong contenders in the 
binary call detection task, do not perform well in these multi-label tasks scenarios 
(including subcall classification). Due to the small number of samples available to train 
the deeper models, overfitting occurs. However, in contrast to segment-level call classi
fication, where the shallow models performed better on these low resources classes (such 
as cry) this is not the case for subcall classification. We postulate that subcalls may in fact 
be a more difficult classification problem, thus while the deeper architectures may overfit, 
when incorporating a pre-trained network, this risk is reduced. Thus, we ultimately use 
the deep neural networks as feature extractors (encoder structure) and rely on the final 
linear layer to perform the actual classification.

As before, we see that the transformer models achieve best performance followed by 
the CNN-based models, and then MLP.

9. Discussion

This section examines the high-dimensional speech-based features compared against 
transformer-based representations. Furthermore, we analyse the attention map of the 
AST model to gain better insight into its internal mechanisms. Finally, we conclude with 
a broad discussion on the overall trends observed across the different experiments.

9.1. Feature space analysis

The results of our multi-label call activity detection experiments suggest that using 
speech-based features as input might be limiting the performance of certain models. 
Although the effectiveness and applicability of these features beyond speech research is 
contested, these features are considered essential when utilising pre-trained models. To 
evaluate this hypothesis, we compare the high-dimensional MFCC and mel-spectral 
features using a uniform manifold approximation and projection (UMAP) for visualisa
tion of the high-dimensional data. We compare these input features along with the pre- 
trained AST representations.
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We obtain the AST representations by computing the output of the last layer of the 
transformer (before the MLP classification layer) for a given input context. As the model 
produces a sequence of outputs both for the spectral and temporal input dimensions, we 

Figure 13. Receiver Operating Characteristic (ROC) curves, for the task of segment-level elephant 
multi-label subcall classification, for elephant voices (EV) dataset. The baseline model (LR) and the top 
performing model (ast-seq) are shown. The chance, which is the performance achieved when making 
random decisions according to the prior.

Table 7. Segment-level elephant multi-label subcall classification results for the Elephant Voices (EV) 
dataset for all considered models. The reported metrics are averages over the K outer folds. The 
associated standard deviation is given in parentheses.

Dataset Model Precision Recall/Sens. Specificity AUC ROC

EV (K ¼ 5) LR 0.141 (0.08) 0.680 (0.03) 0.824 (0.12) 0.826 (0.10)
SVM 0.029 (0.06) 0.007 (0.02) 0.992 (0.02) 0.826 (0.14)
XGB 0.107 (0.15) 0.037 (0.07) 0.999 (0.00) 0.864 (0.12)
MLP 0.131 (0.20) 0.056 (0.08) 0.999 (0.00) 0.875 (0.12)
AlexNet 0.395 (0.36) 0.159 (0.14) 0.998 (0.00) 0.888 (0.09)
ResNet 0.246 (0.30) 0.116 (0.14) 0.998 (0.00) 0.875 (0.09)
AST-cls 0.613 (0.31) 0.325 (0.20) 0.996 (0.01) 0.979 (0.10)
AST-seq 0.374 (0.27) 0.251 (0.23) 0.993 (0.01) 0.845 (0.12)
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average the outputs associated with the spectral input dimension to obtain a single 768- 
dimensional vector every 160 ms in time.

Each of the respective high-dimensional features and representations are reduced to 
a two-dimensional projection using a UMAP (McInnes et al. 2020). The UMAP is 
calibrated using the training labels and applied to the development set.

Figure 14 shows the two-dimensional UMAP for a single inner cross-validation fold of 
the EV dataset. MFCC, mel-spectral features, and AST representations were extracted 
from both training and development fold. It is evident that, while discernible clusters 
form in the training projections for all three feature types, the spectral features (mel and 
MFCC) do not generalise well to the development fold. Despite this, a clear separation 
between the two classes no-call and rumble is observed, for all features. This could 
explain the high performance of shallow models in binary call detection but poor 
performance in multi-label call detection. The AST features do, however, generalise 
well to the validation fold and maintain similar cluster shape.

Upon examination of misclassifications made by the shallow models, it was found that 
the classifier struggled with highly polyphonic segments. These polyphonic instances 
typically include noise, such as engine sounds, wind rustling foliage; or other dominant 
sound sources such as birds, insects, or combinations thereof. Identifying the precise call 
boundary for such instances proved challenging even for human annotators. We believe 
that the low-energy tails of such vocalisations were only noticed by the annotators due to 
the high-energy start of the vocalisation. Additional misclassifications were attributed to 
recording artefacts, such as microphone handling sounds and unanticipated starting or 
ending instances within recordings. It is noteworthy that some misclassifications might 
even be considered legitimate, as certain ground truth labels marginally fall short of the 
threshold required for a positive sample classification.

Deep-classification models with larger temporal contexts faced similar challenges, 
although resulting in fewer misclassifications in the presence of polyphonic source 
environments. However, the CNN models still misclassify low-energy vocalisations 
with extended tails. The AST-based models were the only classifiers that could accurately 
detect low-energy vocalisation in a highly polyphonic settings, likely due to the global 
attention mechanism present in its transformer-encoder architecture.

9.2. Attention map analysis

We now will consider the attention map used by the AST-seq model for a particular 
exemplar drawn from a development fold of the EV dataset. The transformer self- 
attention mechanism, as briefly described, allows to model to selectively focus on 
particular features in the input, based on other input features. This characteristic of the 
attention mechanism enables contextualised classifications based on past and future 
features in the extended input context. We postulate that this is the reason for the models 
improved ability to detect low-energy vocalisations amidst other acoustic sources.

Figure 15 shows the attention map for one isolated model output (token), in a binary 
call detection scenario. Note that the only model architecture that correctly identified this 
example segment was AST-seq. From the attention map, we can see that the model uses 
features from both the past and the future to produce the chosen classification output. 
The majority of the input features are masked by the attention map, but not for the region 
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Figure 14. Supervised UMAP of MFCC, mel-spectral and BEATS features for a particular inner cross- 
validation turn.
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corresponding to the low-frequency elephant rumble. We also see that features from 
other external noise sources are correctly rejected. The focused attention allows the 
model to better reject acoustic sources that may have an adversarial effect on the 
model performance.

From Figure 15 we see that the AST-seq model is also attending to acoustic sources 
other than elephants, e.g. bird calls (indicated as external noise in the figure). This could 
mean that the model is using these external audio sources as a proxy for elephant 
vocalisation, or that the model is using these calls to reject other external sources. With 
the limited data available in the EV dataset, it is not yet possible to discern the mechanism 
at play.

9.3. Inter-call classification analysis

This section discusses the comparative one-vs-one call classification results for LR, 
AlexNet, and AST-seq models. The one-vs-one classification procedure involves pairing 
calls and scoring them in a binary fashion to consider how well a classifier can distinguish 
between two different call types (Section 7.4.1). This differs from the previous analysis 
that considered how well the classifier can distinguish a particular call from acoustic 
sources other than elephant calls (not-call). Since such one-vs-one scoring cannot be 
performed when the two calls in question are present simultaneously, all classification 
intervals where such overlap occurs have been omitted from the one-vs-one scoring.

Figure 16 shows the one-vs-one multi-label AUC detection scores for both EV and 
LDC datasets evaluated on the call-level annotation.

In the case of the EV dataset, we observe that the AST-seq achieves the best perfor
mance in all cases except when distinguishing between roar and cry call types. As 
previously observed, minority classes, such as cry and trumpet, are associated with 

Figure 15. Mel-spectrogram input to ast-seq model with binary call detection probability output 
shown for time step at 2s. Attention map overlay shown, darker regions of the attention map shows 
features rejected by the attention mechanism, and vice versa. In addition external noise sources (e.g. 
bird calls) are also indicated. A detection probability is produced per temporal patch every 160 ms. The 
exemplar is drawn from the development set of the given cross-validation fold.
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Figure 16. Area Under the Curve (AUC) scores, for the task of multi-label one-vs-one elephant call 
detection for (a) The elephant voices (EV) and (b) The Linguistic Data Consortium (LDC) dataset. 
A selection of three models are shown, LR (baseline), AlexNet and ast-seq (top performing). In each 
case the classification performance (AUC score) between two specific classes, are compared using one 
positive class against one negative class in a one-vs-one approach. Importantly, the performance score 
remains identical if the class labels are interchanged – for instance, the performance of cry-vs-rumble 
is equivalent to rumble-vs-cry.
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poor performance. This is particularly noticeable in deep classification models like 
alexnet and AST-seq, which typically require more data to generalise well. The good 
performance of the LR classifier in distinguishing between rumble and cry call types 
suggests that this task is largely linearly separable. This is not surprising as the acoustic 
properties of these two calls are quite different, with cry containing predominantly high- 
frequency information, while rumbles are known for their low-frequency content.

For the LDC (Figure 16 (b)) dataset we observe a similar trend with AST-seq exhibiting 
improved AUC scores across all call pairs when compared to both AlexNet and LR. 
Although both AlexNet and AST-seq models perform equally well in distinguishing 
between trumpet and squelch call types, LR performs on par with a random classifier, 
achieving only an AUC score of 0.51. Likewise, both AlexNet and LR perform poorly in 
differentiating roar and bark call types, while the AST-seq model performs acceptably well.

We conclude that the AST-seq model not only excels at distinguishing elephant calls 
from other environmental sounds but also that the model is able to distinguish between 
different elephant calls.

9.4. Classifier performance

Here, we broadly discuss the overall trends observed by classifier performance across 
both datasets and the various tasks reported in Section 8.

First, we compare LR and SVM. These models have similar computation complexity 
and both rely on a hyperplane decision boundary. Due to the non-linear kernel function 
of the SVM model, the decision boundary is no longer linear as is the case with LR. As 
a result, we observe that the SVM model outperforms the LR models in the majority of 
cases. However, this additional kernel function comes at an increased computational and 
memory complexity. Furthermore, if an output probability is required, the SVM classifier 
requires an additional classifier calibration step. Thus, as a lightweight model for early 
preprocessing of binary call detection (for later downstream tasks), LR is a model that has 
computational cost to performance balance.

XGB had similar performance to the MLP models. However, the hyperparameter 
search was far more computationally expensive to perform for MLP. This is in part due to 
the large hyperparameter space that the MLP models occupy and how increases in the 
depth or width of the model increase its computational complexity. In contrast, the XGB 
model hyperparameters had less variance over the search, indicating that the model was 
more robust to naïve model parameter selection. Furthermore, many of the XGB model 
parameters result in a reduction in the model capacity, by reducing for instance the 
number of leaf nodes or trees. As such, searching the hyperparameter space generally 
leads to computational improvements.

When considering the CNN-based models, we observe that the overall alexnet either 
exceeded or matched the resnet performance. This is counter intuitive, as the residual 
connections in resnets allow for deeper models to be trained. However, due to the small 
size of the datasets used in this work, we do not observe these benefits to performance in 
our experimental results.

Finally, we compare the two best performing models: AST-cls and AST-seq. The only 
difference between these transformer-based models is in their output layer. However, we 
observe in some cases that there is a noticeable performance difference between these two 
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models. For most endpointing metrics, the AST-seq model is superior. We postulate that 
this is due to the sequence-to-sequence training regime, where the explicit call segment 
boundaries are presented to the model during training, while for the AST-cls model this 
has to be implicitly learned as it is only given a single output target. However, this does 
also make detections near the start and the end of the input context more difficult for the 
AST-seq model. While the AST-cls model always produces a model classification of the 
centre of the input context, the AST-seq model is tasked with producing classification 
outputs near the start and the end of the same input context, with less local contextual 
information. Hence, AST-seq is better at call endpointing, while AST-cls is better at 
detection and classification.

10. Summary and conclusion

We have considered the automatic detection, endpointing and classification of elephant 
vocalisations in audio recordings. A combination of both shallow and deep architectures 
were evaluated against two audio datasets containing elephant vocalisations. These 
datasets consist of multi-label classifications targets. By performing call activity detection 
using a classification model applied to a series of context windows over time, we are able 
to compute the multi-label call probability every 100 ms. From these discrete context 
window detections, we are able to localise the call in time and endpoint at the start and 
the end of the call in the recording. Furthermore, we evaluate the model's ability to 
identify an unknown elephant vocalisation from an endpointed audio segment.

We have evaluated LR, SVM and XGB as our chosen shallow model architectures, and 
MLP, CNN-based AlexNet and ResNet architectures and finally the transformer-based 
AST models as the chosen deep model architectures. These models have been evaluated 
on a large range of hyperparameters, using nested cross-validation, in an attempt to find 
the best selection of model parameters for the given datasets.

We have also investigated the use of a dimensionality reduction pre-processing step 
and MFCC and mel-spectral feature configurations. For shallow models, an input context 
length of 500 ms to 1000 ms performed best, followed by a PCA dimensionality reduction 
step. For the CNN-based models, an input length of 2.5 s lead to the best performance.

For the deep architectures, transfer learning using out-of-domain pre-trained net
works was found to lower the overall training time but lead to only minor or no 
performance improvements compared to starting from random initialisation. In con
trast, using in-domain pre-trained models lead to both a reduction in training time and 
improved model performance. The application of task transfer by finetuning a model 
pre-trained to produce a single classification output to produce a sequence of classifica
tion outputs drastically improves the computational efficiency of the model and also 
leads to the best performing model (AST-seq).

The AST-based models performed the best in all three tasks: call detection (both 
binary and multi-label), call endpointing and call classification. However, we also find 
that LR is a viable lightweight model for binary call detection. In both multi-label call 
detection and classification tasks, it was found that the shallow classification models lead 
to a deterioration in performance, compared to binary call detection. We speculate that 
this is because the MFCC input feature space used by the shallow models not represen
tative of the call characteristics.
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In conclusion, this study has demonstrated the significant benefits of pre-training and 
ensuant success of sophisticated models, in the context of small bioacoustic datasets. The 
AST-seq model emerged as a top performer in terms of both computational efficiency, 
due to the sequence-to-sequence structure, and detection as well as classification perfor
mance. Additionally, we found that, while speech features perform well in detection 
tasks, they are not as effective for classification purposes. Finally, transformer models 
offer a promising avenue for sub-call classification, demonstrating their successful 
application in early automated animal behavioural classification.

Notes

1. AudioSet is a large-scale dataset consisting of over 2 million 30-second sound clips, each 
labelled with one or more of 527 audio event classes. It has been widely used in audio 
classification and self-supervision tasks. The dataset covers a wide range of categories, from 
music and speech to nature sounds and human activities.

2. This differs from Zeppelzauer et al. (2013), who used the maximum classifier output 
probability instead.

3. The extended context window is typically an order of magnitude longer than the typical 
context window.
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