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Abstract

‘We propose a constrained shift and scale invariant sparse coding
model for the purpose of unsupervised segmentation and clus-
tering of speech into acoustically relevant sub-word units for au-
tomatic speech recognition. We introduce a novel local search
algorithm that iteratively improves the acoustic relevance of the
automatically-determined sub-word units from a random ini-
tialization by repeated alignment and subsequent re-estimation
with the training material. We also contribute an associated
population-based metaheuristic optimisation procedure related
to genetic approaches to achieve a global search for the most
acoustically relevant set of sub-word units. A first application of
this metaheuristic search indicates that it yields an improvement
over a corresponding local search. Using a subset of TIMIT for
training, we also find that some of the automatically-determined
sub-word units in our final dictionaries exhibit a strong correla-
tion with the reference phonetic transcriptions. Furthermore,
in some cases our sub-word transcriptions yield a compact set
of often-used pronunciations. Informal listening tests indicate
that the clustering is robust, and provides optimism that our ap-
proach will be suited to the task of generating pronunciation
dictionaries that can be used for ASR.

Index Terms: segmentation, clustering, sparse coding, genetic
algorithms, metaheuristic search, sub-word units

1. Introduction

We investigate the application of a sparse coding and dictio-
nary learning framework to the task of unsupervised discovery
of sub-word acoustic units in speech. This task is motivated by
the need for building ASR’s for under-resourced languages.

Previous work in the field of automatic segmentation by
Torbati et al [1] demonstrates promising results using a Hier-
archical Dirichlet Process HMM. Singh et al [2] attempt to ob-
tain sub-word acoustic models and associated transcriptions us-
ing a maximum likelihood approach, conditioned on the ortho-
graphic transcriptions, acoustic models and resulting pronunci-
ations. Another approach to segment clustering using segment-
level Gaussian Posteriorgrams is taken by Wang et al [3]. Sparse
coding has previously been used in speech primarily for feature
extraction [4-7].

In this study we present a novel implementation of sparse
coding that is constrained to non-overlapping acoustic units to
make it appropriate for segmenting speech. We also embed our
sparse coding and dictionary learning algorithm inside a mod-
ified genetic search to obtain a hybrid metaheuristic algorithm
that explores the solution space more extensively.
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2. Background

Sparse coding attempts to reconstruct some input signal using
a linear combination of the smallest possible number of basis
functions taken from a finite set. This set is called the dictionary
in the sparse coding literature and should not to be confused
with the term pronunciation dictionary. A sparse code x, can
therefore be seen as a solution to

argmin||z||, suchthat y = Dz (1)

where y € RY*! is the signal we are trying to reconstruct,
D € RV*M g the set of basis functions, packed column-wise,
and x € R™*! where |z||, represents the number of nonzero
values in the vector x. In the context of speech, we may con-
sider a typical utterance to be our input signal, which we wish
to code using a highly sparse selection of sub-word phonemic
units, which serve as basis functions.

2.1. Shift and scale invariance

Sub-word acoustic units are generally much shorter than the
speech signal under analysis. Furthermore, they may vary in
length considerably. It is therefore necessary to insist on shift
and scale invariant sparse coding. To obtain shift-invariance,
the dictionary-code product Dz in Equation 1 is replaced by a
dictionary-code convolution
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where & € RV¢*M is the convolutional dictionary, and S €
RM*N are the coefficient sequences [4, 8]. The quantities ¢’
and s’ refer to the j™ column and row of ® and S respectively.
Each basis function ¢’ is now associated with a coefficient se-
quence s’ that indicates not just whether a basis function is be-
ing used, but also at which time offset in y. To obtain scale-
invariance, each basis function is represented across a range of
time-scales in the dictionary that is presented to the sparse cod-
ing algorithm [9].

2.2. Sparse coding as an optimization problem

The exact sparse coding formulation as given in Equation (1)
is intractable. Moreover, in our case the pursuit of an exact
recovery of each input signal is certain to be futile, since we will
restrict the coefficient sequences to the use of basis functions
that do not overlap in time. Most authors choose to cast the
problem into an optimization framework with the cost function
given by

K
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where S, refers to the coefficient sequences used to code the
k™M input signal y & [4,9-12]. The cost function can be seen as
a weighted sum of the reconstruction error and a code diversity
measure 7(.S). This latter term yields small values when the
code is sparse, and large values when it is not. The [y pseudo-
norm used in Equation (1) is one possible diversity measure, but
others that are differentiable have been proposed [9, 13].

3. Implementation

In order to ensure that discovered basis functions can corre-
spond to useful sub-word units, we introduce two new con-
straints, leading to what we believe to be a novel class of sparse
codes. Firstly, we restrict the coefficient sequences to use basis
functions that do not overlap in time. Secondly, we insist that all
code coefficients are non-negative. These constraints enable the
sparse codes to be unambiguously interpretable as a sequential
alignment of the input signal with a set of basis functions and
also lead to a new approach to the optimal solution to the con-
strained problems.

3.1. Finding the optimal alignment of the basis functions

We now find the best possible alignment S, of the input ut-
terance y,, with basis functions ¢; from our dictionary ®. In
order to quantify how good an alignment is, we use the cost
function in Equation (3), with the [y pseudo-norm as a sparsity
constraint:

C(®,Sk) =llyx — @ * Skll5 + BlSkll, - S
Since we enforce the constraint that no basis function may over-
lap with another in the reconstruction, the optimal choice of
coefficient given a time offset and basis function is unambigu-
ous. This enables the alignment invariant calculation of a delta
cost matrix AC'y, with AC'[j, n] being the reduction in the
cost function when basis function ¢; is activated at time off-
set n. The path through the cost matrix that yields the largest
total reduction in cost can then be found by dynamic program-
ming. Given the input signal y,, and the time-scale of the basis
function L, the optimal coefficient for basis function d)j at the
time-offset n can be calculated as
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with negative coefficients set to zero.  Since both the
squared vector norm of the reconstruction residual and the [o
pseudonorm of the coefficient sequences are element-wise sum-
mations, the change in the cost function is confined to the
change in the norm of the reconstruction residual within the
time interval that the basis function ¢; is active. Thus, we can
calculate the reduction in cost function as

ACk[j,n] =||yln:n+ L]l - 8

Q]

2
—Hyk[n i+ Lj] — Skoplf, n]@; ,

The combination of the steps detailed in this section com-
prises a new algorithm for the optimal solution to the con-
strained sparse coding model we consider in this paper.

3.2. Determining the dictionary of basis functions

We now consider the task of obtaining the optimal set basis
functions given an alignment. If we define the set {y,, } to con-
tain all segments of the input signals where the basis function
¢, is used to reconstruct those segments, and {s,, } the corre-
sponding coefficients, then it can be shown that

¢j,0pl = Z Snyn/ Z Si. (7)

Equation (7) does not take into account that we have made
time-scaled versions of each basis function available for cod-
ing. The final step in updating the basis functions is therefore to
reinforce this relationship. Suppose the set {d);} contains the
updated basis functions derived from the same prototype ¢', re-
sampled to a common time-scale and normalised to unit norm.
Also let ¢, denote the number of times the scaled basis func-
tion ﬁbil is aligned with the input utterances, and L, the length
of that scaled basis function. A good approximation to the opti-
mal prototype basis function is then

1
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where Z; is a normalising factor. The factor L, o, represents
a very good approximation of the relative importance of ¢)£l in
reducing the cost function, since each instance in which a basis
function is used approximately decreases the cost function by a
constant value proportional to that basis function’s length.

3.3. Improving dictionaries with search

Having determined procedures for finding an optimal alignment
given a dictionary, and a close to optimal set of basis functions
given an alignment, we can develop a local search procedure to
improve from an initial dictionary through repeated alignment
of the dictionary with the input data, and subsequent use of that
alignment to update the dictionary. Although this procedure is
capable of reliably improving initial dictionaries, the point at
which it converges is likely to be at a local optimum.

We turn to the metaheuristic strategies detailed below to im-
prove our chances of finding good solutions. As an ensemble,
these strategies can be seen as a modified genetic algorithm, re-
taining the notion of maintaining a population of solutions, and
the genetic operators of selection and mutation. The chromo-
some of each individual in the population is a dictionary of pro-
totypical (i.e. scale invariant) basis functions, with the individ-
ual basis functions seen as the genes. The fitness of a particular
chromosome is simply the cost (Equation (3)), of its optimal
alignment with the training data.

3.3.1. Selection

When preparing a new generation of solutions, the first step is
to select the individuals from the previous generation which are
to be used as the basis of the new generation. Since we want
to exploit those solutions that show promise, and abandon those
that do not, more offspring should be derived from fitter solu-
tions. However, applying this bias too aggressively results in
a loss of genetic diversity and hence memory of areas in the
fitness landscape that show promise.

We therefore use a scheme known as rank selection, where
the fitnesses of the individuals in the previous generation are
ranked with the best individual achieving rank N and the worst
rank 1 [14]. The expected number of offspring of individual 7 is
tied to this rank R[¢] such that
R[] -1

N-1"~ ©)
where m,, is the variable selection pressure, and is constrained
such that 1 < m, < 2 and m; = 2 — m,. We use stochastic
universal sampling (SUS) to perform the selection itself, which
guarantees that the actual number of offspring of each individ-
ual O[i] is constrained to | E[i]| < O[i] < [E[i]] [15].

3.3.2. Mutation

After selecting parents, new offspring can be produced by muta-
tion, whereby each gene is given a small probability y of being

E[i] = m; + (ma — my)
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Figure 1: Number of coefficients used and normalised recon-
struction error for the elite individual for various values of 3
and D. The reference transcription contains 56377 phonemes.

modified. In order for the modification to represent a sensi-
ble new search direction, we replace the affected gene with a
segment randomly drawn from the pool of blind segmentations
created during initialization. In order to ensure that the fitness
of each generation is at least as good as the previous one, we
protect one instance of each of the e best individuals from the
previous generation from mutation.

3.3.3. Iterated search

The dictionaries developed through a random initialization, as
well as those disrupted through mutation, are generally quite far
from the minima of their basins of attraction. Even more prob-
lematically, they would not be at comparable distances from
their eventual convergence point. When we compare the fit-
nesses of dictionaries, we would actually like to compare the
minima of their respective basins of attraction. Failing that,
we want all the dictionaries in the population to be roughly the
same distance away from their minima. Anything else would
lead to a scheme that cannot reliably distinguish between unfit
individuals in deep basins and fit individuals in shallow basins.

Therefore, as a final step in producing a new individual,
a local search is performed using the iterative realignment de-
scribed at the start of Section 3.3. The search terminates after
the absolute per-iteration improvement AC' in the cost function
falls below a certain threshold. In this study the threshold was
initially infinite, and updated to the median of the population’s
terminal AC' after each generation.

3.4. Initialising the dictionary

To initialise our dictionary discovery process we apply a blind
segmentation algorithm to the feature vectors extracted from the
speech signal. This creates a pool of candidate basis functions
from which we can draw to construct plausible initial dictionar-
ies. For this purpose, we employed the approach used by Ten
Bosch, which inserts segment boundaries at locations where
feature vectors change rapidly [16].

4. Experiments and results
4.1. Experimental setup and training overview

The 1386 SI training utterances of the TIMIT corpus were used
for training. These are phonetically diverse sentences each spo-
ken only once. This choice is motivated by the desire to avoid
repetition which could bias the devepment of sub-word units
that favour very specific contexts. The selected utterances are
converted to 12-coefficient MFCC feature vectors using HTK
[17]. The MFCCs are generated at a rate of one every 12 ms,
with a window size of 19.2 ms.

A series of metaheuristic searches was applied to the train-
ing corpus in order to investigate the effect of tunable param-
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Figure 2: Generational development of the population fitness
distribution for an experiment with 8 = 8.3 and D = 55.

Table 1: Improvement in cost function by metaheuristic search
compared to pure local search as a multiple of the search ter-
mination threshold.

| D=5 [D=65] D=15 |
B=6 3663 | 3674 | 38.15
B=83 || 4636 | 2039 | 2162
B=106 [ 3215 [ 2487 | 60.03

eters. The parameters in question were the number of proto-
typical basis functions D and the diversity penalty 5. The re-
maining parameters such as the mutation rate p, the selection
pressure m, and the population size were fixed at values that
appeared reasonable during initial informal testing.

Figure 1 summarises the elite individual found for each pair
(8, D) on the training grid in terms the number of sub-word
units used by that individual in its transcription of the training
audio, as well as the resulting normalised mean reconstruction
error. From the figure it is clear that the diversity penalty al-
lows the intended trade off between reconstruction error and in-
creased code sparsity. It is also observable that our search pro-
cedure is capable of using larger dictionaries to perform more
accurate acoustic matching. Furthermore, as the dictionaries be-
come larger, with ( held fixed, the number of coefficients used
increases. This implies that the learned basis functions start
matching shorter acoustic events.

4.2. Performance of metaheuristic search

Figure 2 shows how the metaheuristic search influences the fit-
ness distribution of a population over the course of 30 genera-
tions. It is apparent that the algorithm manages to produce pop-
ulations that consistently achieve higher fitnesses than previous
generations. The generally smooth 1/n progression may be at-
tributed to the local search function combined with the adapting
AC threshold. Sudden jumps in fitness (most clearly visible at
generation 12 and 16) are the result of fortuitous mutation.

Having shown that the metaheuristic search is effective, we
would also like to show that it represents an improvement upon
randomly guessed initial dictionaries. In order to do this, we
saved the initial population of dictionaries for a subset of the
experiments described in Section 4.1. These initial dictionaries
were individually optimised using an exclusively local search
until the per-iteration reduction in the cost function fell below
the terminal AC.

Table 1 shows the absolute improvement (as a multiple of
the terminal AC') made in the cost function by comparing the
elite individual from the metaheuristic search to the elite indi-
vidual resulting from iteratively improving the initial popula-
tion. It is clear that the metaheuristic search consistently finds
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Figure 4: Coincidence of learned basis functions with reference
phonemes for B = 10.6 and D = 50.

substantially better solutions. Figure 3 compares the terminal
fitness distributions for the experiment that showed the greatest
improvement when metaheuristic search was applied.

4.3. Evaluation of basis functions as sub-word units

In this section we evaluate whether the basis functions we learn
in our experiments could be suited to the task of generating pro-
nunciation dictionaries that can be used for ASR.

4.3.1. Coincidence with reference phonemes

Figure 4 shows how our learned basis functions coincide with
the reference phonemes described by TIMIT. Since we did not
attempt to infer an optimal alignment between our basis func-
tion transcriptions and TIMIT’s phoneme transcriptions, we
simply count the number of times where at least 50% of the
span one of our basis functions occurs within the time interval
of a reference phoneme instance. Therefore we do not present
a true confusion matrix, but rather a 2D coincidence histogram,
where every row is normalised to show the fraction of each of
our basis functions that coincide with a reference phoneme.

Figure 4, in conjunction with informal listening tests, in-
dicates that the clustering and segmentation is reasonably ro-
bust and acoustically meaningful. Many reference phonemes
are strongly represented using only one or two basis functions.
In addition, in cases where a single basis function is used to
represent multiple reference phonemes, it is often because those
reference phonemes are acoustically similar.

4.3.2. Pronunciation consistency

For our learned sub-word units to be useful for the generation
of pronunciation dictionaries, the transcription of spoken words
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Pronunciation consistency

Figure 5: Weighted average of the fraction of occurrences of
the 20 most frequent words transcribed by one of their top 3
pronunciations. The reference transcription achieves 0.69.

Table 2: Pronunciation statistics for the most consistent set of
sub-word acoustic units. Reference statistics are in parentheses.

Word | #Occ. | #Pron. | Toppron. | Top3pron. | Top5 pron.
The 508 55 (22) T4% (39%) | 25% (81%) | B34% (88%)
a 351 61 (20) 5% (36%) 15% (72%) | 22% (81%)
10 269 86 (34) 7% (20%) 18% (43%) | 26% (60%)
of 245 82 (25) 9% (35%) 20% (69%) | 29% (80%)
and 226 102(61) | 8% (24%) 17% (36%) | 24% (48%)
he 212 37(10) 33%(63%) | 51%(91%) | 65%(96%)
in 184 75(19) 8% (43%) 17% (T1%) | 25% (83%)
is 170 61(17) 12% (46%) | 29%(81%) | 38% (88%)
are 92 51(18) 8% (25%) 20% (57%) | 28% (T7%)

in terms of our units should be consistent. In order to evaluate
how well our sub-word transcriptions perform in this respect,
we calculate the cumulative fractions of the occurrences of each
word that are transcribed using the top /N pronunciations for
that word. Figure 5 reports the weighted average fraction of
occurrences for the top 3 pronunciations for a selection of the 20
most frequent words. In the most consistent case, an average of
25% of the occurrences of the selected words were represented
using a set of just 3 pronunciations. This is quite poor compared
to TIMIT’s reference transcriptions, which achieve a fraction of
69%. However, it is high enough that we believe our approach
shows promise, and work is ongoing to improve the achieved
consistency.

Table 2 reports in-depth pronunciation statistics for the
most consistent experiment in Figure 5. It is clear that even
hand transcription by experts yields much phonetic variation.
For example, the word ‘and’ occurs 226 times in the training
corpus, and is pronounced in 61 different ways.

5. Summary and conclusions

In this paper, we have contributed a novel class of sparse codes
for the specific task of unsupervised segmention and clustering
of speech. We also contributed the associated algorithms for the
optimal calculation of the basis functions and the corresponding
alignment with the audio features. Finally, we proposed a new
optimisation strategy that embeds a local search within a meta-
heuristic search.

We found that the proposed metaheuristic search improved
upon local search for the purpose of extracting acoustically rele-
vant sub-word units from speech, on the basis of both an empir-
ical cost function and informal listening tests. We are optimistic
that, with further improvement, the automatically induced sub-
word transcriptions will become useful for the development of
ASR systems.
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